
User Documentation
Release 5.4.2

Yves Renard, Julien Pommier, Konstantinos Poulios

Jul 08, 2022

Contents

1 Introduction 1

2 How to install 3

3 Linear algebra procedures 5

4 MPI Parallelization of GetFEM 7
4.1 State of progress of GetFEM MPI parallelization . 8

5 Catch errors 11

6 Build a mesh 13
6.1 Add an element to a mesh . 13
6.2 Remove an element from a mesh . 15
6.3 Simple structured meshes . 15
6.4 Mesh regions . 16
6.5 Methods of the getfem::mesh object . 17
6.6 Using dal::bit_vector . 19
6.7 Face numbering . 19
6.8 Save and load meshes . 20

7 Build a finite element method on a mesh 23
7.1 First level: manipulating fems on each elements . 24
7.2 Examples . 25
7.3 Second level: the optional “vectorization/tensorization” 26
7.4 Third level: the optional linear transformation (or reduction) 27
7.5 Obtaining generic mesh_fem’s . 28
7.6 The partial_mesh_fem object . 28

8 Selecting integration methods 29
8.1 Methods of the mesh_im object . 31

9 Mesh refinement 33

10 Compute arbitrary terms - high-level generic assembly procedures - Generic Weak-Form
Language (GWFL) 35
10.1 Overview of GWFL . 35

i

10.2 Some basic examples . 37
10.3 Derivation order and symbolic differentiation . 38
10.4 C++ Call of the assembly . 39
10.5 C++ assembly examples . 40
10.6 Script languages call of the assembly . 43
10.7 The tensors . 43
10.8 The variables . 43
10.9 The constants or data . 44
10.10 Test functions . 44
10.11 Gradient . 44
10.12 Hessian . 44
10.13 Predefined scalar functions . 45
10.14 User defined scalar functions . 45
10.15 Derivatives of defined scalar functions . 46
10.16 Binary operations . 46
10.17 Unary operators . 47
10.18 Parentheses . 47
10.19 Explicit vectors . 47
10.20 Explicit matrices . 47
10.21 Explicit tensors . 47
10.22 Access to tensor components . 48
10.23 Constant expressions . 48
10.24 Special expressions linked to the current position . 48
10.25 Print command . 49
10.26 Reshape a tensor . 49
10.27 Trace, Deviator, Sym and Skew operators . 49
10.28 Nonlinear operators . 49
10.29 Macro definition . 50
10.30 Explicit Differentiation . 51
10.31 Explicit Gradient . 52
10.32 Interpolate transformations . 52
10.33 Element extrapolation transformation . 54
10.34 Evaluating discontinuities across inter-element edges/faces 55
10.35 Double domain integrals or terms (convolution - Kernel - Exchange integrals) 56
10.36 Elementary transformations . 57
10.37 Xfem discontinuity evaluation (with mesh_fem_level_set) 58
10.38 Storage of sub-expressions in a getfem::im_data object during assembly 59

11 Compute arbitrary terms - low-level generic assembly procedures (deprecated) 61
11.1 available operations inside the comp command . 63
11.2 others operations . 64

12 Some Standard assembly procedures (low-level generic assembly) 65
12.1 Laplacian (Poisson) problem . 65
12.2 Linear Elasticity problem . 67
12.3 Stokes Problem with mixed finite element method . 68
12.4 Assembling a mass matrix . 68

13 Interpolation of arbitrary quantities 69
13.1 Basic interpolation . 69
13.2 Interpolation based on the generic weak form language (GWFL) 70

ii

14 Incorporate new finite element methods in GetFEM 73

15 Incorporate new approximated integration methods in GetFEM 75

16 Level-sets, Xfem, fictitious domains, Cut-fem 77
16.1 Representation of level-sets . 78
16.2 Mesh cut by level-sets . 78
16.3 Adapted integration methods . 79
16.4 Cut-fem . 80
16.5 Discontinuous field across some level-sets . 80
16.6 Xfem . 80
16.7 Post treatment . 81

17 Tools for HHO (Hybrid High-Order) methods 83
17.1 HHO elements . 83
17.2 Reconstruction operators . 84
17.3 Stabilization operators . 86

18 Interpolation/projection of a finite element method on non-matching meshes 89
18.1 mixed methods with different meshes . 90
18.2 mortar methods . 90

19 Compute 𝐿2 and 𝐻1 norms 91

20 Compute derivatives 93

21 Export and view a solution 95
21.1 Saving mesh and mesh_fem objects for the Matlab interface 95
21.2 Producing mesh slices . 96
21.3 Exporting mesh, mesh_fem or slices to VTK/VTU . 98
21.4 Exporting mesh, mesh_fem or slices to OpenDX . 98

22 A pure convection method 101

23 The model description and basic model bricks 103
23.1 The model object . 103
23.2 The brick object . 106
23.3 How to build a new brick . 107
23.4 How to add the brick to a model . 111
23.5 Generic assembly bricks . 112
23.6 Generic elliptic brick . 113
23.7 Dirichlet condition brick . 114
23.8 Generalized Dirichlet condition brick . 116
23.9 Pointwise constraints brick . 116
23.10 Source term bricks (and Neumann condition) . 117
23.11 Predefined solvers . 118
23.12 Example of a complete Poisson problem . 118
23.13 Nitsche’s method for dirichlet and contact boundary conditions 120
23.14 Constraint brick . 123
23.15 Other “explicit” bricks . 124
23.16 Helmholtz brick . 124
23.17 Fourier-Robin brick . 125
23.18 Isotropic linearized elasticity brick . 125

iii

23.19 Linear incompressibility (or nearly incompressibility) brick 126
23.20 Mass brick . 127
23.21 Bilaplacian and Kirchhoff-Love plate bricks . 128
23.22 Mindlin-Reissner plate model . 129
23.23 The model tools for the integration of transient problems 131
23.24 Small sliding contact with friction bricks . 139
23.25 Large sliding/large deformation contact with friction bricks 151

24 Numerical continuation and bifurcation 161
24.1 Numerical continuation . 161
24.2 Detection of limit points . 163
24.3 Numerical bifurcation . 164
24.4 Approximation of solution curves of a model . 167

25 Finite strain Elasticity bricks 169
25.1 Some recalls on finite strain elasticity . 169
25.2 Add an nonlinear elasticity brick to a model . 173
25.3 Add a large strain incompressibility brick to a model 174
25.4 High-level generic assembly versions . 175

26 Small strain plasticity 179
26.1 Theoretical background . 179
26.2 Flow rule integration . 181
26.3 Some classical laws . 184
26.4 Elasto-plasticity bricks . 188

27 ALE Support for object having a large rigid body motion 193
27.1 ALE terms for rotating objects . 193
27.2 ALE terms for a uniformly translated part of an object 196

28 Appendix A. Finite element method list 199
28.1 Classical 𝑃𝐾 Lagrange elements on simplices . 201
28.2 Classical Lagrange elements on other geometries . 205
28.3 Elements with hierarchical basis . 209
28.4 Classical vector elements . 213
28.5 Specific elements in dimension 1 . 215
28.6 Specific elements in dimension 2 . 217
28.7 Specific elements in dimension 3 . 230

29 Appendix B. Cubature method list 237
29.1 Exact Integration methods . 237
29.2 Newton cotes Integration methods . 238
29.3 Gauss Integration methods on dimension 1 . 238
29.4 Gauss Integration methods on dimension 2 . 239
29.5 Gauss Integration methods on dimension 3 . 243
29.6 Direct product of integration methods . 245
29.7 Specific integration methods . 245
29.8 Composite integration methods . 245

30 References 247

Bibliography 249

iv

Index 253

v

vi

CHAPTER 1

Introduction

The GetFEM project focuses on the development of a generic and efficient C++ library for finite element
methods elementary computations. The goal is to provide a library allowing the computation of any
elementary matrix (even for mixed finite element methods) on the largest class of methods and elements,
and for arbitrary dimension (i.e. not only 2D and 3D problems).

It offers a complete separation between integration methods (exact or approximated), geometric trans-
formations (linear or not) and finite element methods of arbitrary degrees. It can really relieve a more
integrated finite element code of technical difficulties of elementary computations.

Examples of available finite element method are : Pk on simplices in arbitrary degrees and dimensions,
Qk on parallelepipeds, P1, P2 with bubble functions, Hermite elements, elements with hierarchic basis
(for multigrid methods for instance), discontinuous Pk or Qk, XFem, Argyris, HCT, Raviart-Thomas,
etc.

The addition of a new finite element method is straightforward. Its description on the reference element
must be provided (in most of the cases, this is the description of the basis functions, and nothing more).
Extensions are provided for Hermite elements, piecewise polynomial, non-polynomial and vectorial
elements, XFem.

The library also includes the usual tools for finite elements such as assembly procedures for classi-
cal PDEs, interpolation methods, computation of norms, mesh operations, boundary conditions, post-
processing tools such as extraction of slices from a mesh, etc.

GetFEM can be used to build very general finite elements codes, where the finite elements, integration
methods, dimension of the meshes, are just some parameters that can be changed very easily, thus al-
lowing a large spectrum of experimentations. Numerous examples are available in the tests directory
of the distribution.

GetFEM has only a (very) experimental meshing procedure (and produces regular meshes), hence it is
generally necessary to import meshes. Imports formats currently known by GetFEM are GiD, Gmsh and
emc2 mesh files. However, given a mesh, it is possible to refine it automatically.

Copyright © 2004-2022 GetFEM project.

The text of the GetFEM website and the documentations are available for modification and reuse under
the terms of the GNU Free Documentation License

1

http://www.gnu.org/licenses/fdl.html

User Documentation, Release 5.4.2

GetFEM is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version along with the GCC Runtime Library Exception either version
3.1 or (at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License and GCC
Runtime Library Exception for more details. You should have received a copy of the GNU Lesser
General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51
Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

2 Chapter 1. Introduction

CHAPTER 2

How to install

Since we use standard GNU tools, the installation of the GetFEM library is somewhat standard. See the
download and install page for more details for the installations on the different plateforms.

3

../download.html

User Documentation, Release 5.4.2

4 Chapter 2. How to install

CHAPTER 3

Linear algebra procedures

The linear algebra library used by GetFEM is Gmm++ which is now a separate library. Please see the
GMM++ user documentation.

Note that GetFEM includes (since release 1.7) its own version of SuperLU 3.0 (see SuperLU web site)
hence a direct sparse solver is available out of the box. Note that an option of the ./configure file
allows to disable the included version of SuperLU in order to use a pre-installed version.

A small interface to MUMPS is also provided (see MUMPS web1 or MUMPS web2). See the file gmm/
gmm_MUMPS_interface.h. In order to use MUMPS, you have to indicates some options to the
configure shell:

--with-mumps-include-dir=" -I /path/to/MUMPS/include "
--with-mumps=" F90 libraries and libs of MUMPS to be linked "

alternatively, the option --enable-mumps will search for an installed MUMPS library. Note that
if both the sequential and the parallel version is installed on your system (especially on Debian
and Ubuntu), the default version will be the parallel one. To select the sequential one it is nec-
essary to add the option --with-mumps="-lsmumps_seq -ldmumps_seq -lcmumps_seq
-lzmumps_seq".

For instance if you want to use the sequential version of MUMPS with double and complex double:

--with-mumps-include-dir=" -I /path/to/MUMPS/include "
--with-mumps=" ...F90libs... -L /path/to/MUMPS/lib -ldmumps -lzmumps -
→˓lpord

-L /path/to/MUMPS/libseq -lmpiseq "

where ...F90libs... are the libraries of the fortran compiler used to compile MUMPS (these are
highly dependant on the fortran 90 compiler used, the ./configure script should detect the options
relative to the default fortran 90 compiler on your machine and display it – for example, with the intel
ifort compiler, it is -L/opt/icc8.0/lib -lifport -lifcoremt -limf -lm -lcxa
-lunwind -lpthread)

5

http://getfem.org/gmm.html
http://crd.lbl.gov/~xiaoye/SuperLU
http://graal.ens-lyon.fr/MUMPS
http://www.enseeiht.fr/apo/MUMPS

User Documentation, Release 5.4.2

6 Chapter 3. Linear algebra procedures

CHAPTER 4

MPI Parallelization of GetFEM

Of course, each different problem should require a different parallelization adapted to its specificities in
order to obtain a good load balancing. You may build your own parallelization using the mesh regions
to parallelize assembly procedures.

Nevertheless, the brick system offers a generic parallelization based on Open MPI (communication
between processes), METIS (partition of the mesh) and MUMPS (parallel sparse direct solver). It is
available with the compiler option -D GETFEM_PARA_LEVEL=2 and the library itself has to be com-
piled with the option --enable-paralevel=2 of the configure script. Initial MPI parallelization of
GetFEM has been designed with the help of Nicolas Renon from CALMIP, Toulouse.

When the configure script is run with the option --enable-paralevel=2, it searches for MPI,
METIS and parallel MUMPS libraries. If the python interface is built, it searches also for MPI4PY
library. In that case, the python interface can be used to drive the parallel version of getfem (the
other interfaces has not been parallelized for the moment). See demo_parallel_laplacian.py in the inter-
face/test/python directory.

With the option -D GETFEM_PARA_LEVEL=2, each mesh used is implicitly partitionned (using
METIS) into a number of regions corresponding to the number of processors and the assembly pro-
cedures are parallelized. This means that the tangent matrix and the constraint matrix assembled in the
model_state variable are distributed. The choice made (for the moment) is not to distribute the vectors.
So that the right hand side vectors in the model_state variable are communicated to each processor (the
sum of each contribution is made at the end of the assembly and each processor has the complete vector).
Note that you have to think to the fact that the matrices stored by the bricks are all distributed.

A model of C++ parallelized program is tests/elastostatic.cc. To run it in parallel you have
to launch for instance:

mpirun -n 4 elastostatic elastostatic.param

For a python interfaced program, the call reads:

mpirun -n 4 python demo_parallel_laplacian.py

7

https://www.open-mpi.org
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://graal.ens-lyon.fr/MUMPS

User Documentation, Release 5.4.2

If you do not perform a make install, do not forget to first set the shell variable PYTHONPATH to the
python-getfem library with for instance:

export PYTHONPATH=my_getfem_directory/interface/src/python

4.1 State of progress of GetFEM MPI parallelization

Parallelization of getfem is still considered a “work in progress”. A certain number of procedure are still
remaining sequential. Of course, a good test to see if the parallelization of your program is correct is to
verify that the result of the computation is indeed independent of the number of process.

• Assembly procedures

Most of assembly procedures (in getfem/getfem_assembling.h) have a parameter cor-
responding to the region in which the assembly is to be computed. They are not paral-
lelized themselves but aimed to be called with a different region in each process to dis-
tribute the job. Note that the file getfem/getfem_config.h contains a procedures called
MPI_SUM_SPARSE_MATRIX allowing to gather the contributions of a distributed sparse ma-
trix.

The following assembly procedures are implicitly parallelized using the option -D
GETFEM_PARA_LEVEL=2:

– computation of norms (asm_L2_norm, asm_H1_norm, asm_H2_norm . . . , in
getfem/getfem_assembling.h),

– asm_mean_value (in getfem/getfem_assembling.h),

– error_estimate (in getfem/getfem_error_estimate.h).

This means in particular that these functions have to be called on each processor.

• Mesh_fem object

The dof numbering of the getfem::mesh_fem object remains sequential and is executed on each
process. The parallelization is to be done. This could affect the efficiency of the parallelization
for very large and/or evoluting meshes.

• Model object and bricks

The model system is globally parallelized, which mainly means that the assembly procedures
of standard bricks use a METIS partition of the meshes to distribute the assembly. The tan-
gent/stiffness matrices remain distibuted and the standard solve call the parallel version of
MUMPS (which accept distributed matrices).

For the moment, the procedure actualize_sizes() of the model object remains sequential
and is executed on each process. The parallelization is to be done.

Some specificities:

– The explicit matrix brick: the given matrix is considered to be distributed. If it is not, only
add it on the master process (otherwise, the contribution will be multiplied by the number of
processes).

– The explicit rhs brick: the given vector is not considered to be distributed. Only the given
vector on the master process is taken into account.

8 Chapter 4. MPI Parallelization of GetFEM

User Documentation, Release 5.4.2

– Constraint brick: The given matrix and rhs are not considered to be distributed. Only the
given matrix and vector on the master process are taken into account.

– Concerning contact bricks, only integral contact bricks are fully parallelized for the moment.
Nodal contact bricks work in parallel but all the computation is done on the master process.

4.1. State of progress of GetFEM MPI parallelization 9

User Documentation, Release 5.4.2

10 Chapter 4. MPI Parallelization of GetFEM

CHAPTER 5

Catch errors

Errors used in GetFEM are defined in the file gmm/gmm_except.h. In order to make easier the error
catching all errors derive from the type std::logic_error defined in the file stdexcept of the
S.T.L.

A standard procedure, GMM_STANDARD_CATCH_ERROR, is defined in gmm/gmm_except.h. This
procedure catches all errors and prints the error message when an error occurs. It can be used in the
main procedure of the program as follows:

int main(void) {
try {

... main program ...
} GMM_STANDARD_CATCH_ERROR;

}

11

User Documentation, Release 5.4.2

12 Chapter 5. Catch errors

CHAPTER 6

Build a mesh

As a preliminary, you may want to read this short introduction to the GetFEM vocabulary.

GetFEM has its own structure to store meshes defined in the files getfem/
bgeot_mesh_structure.h and getfem/getfem_mesh.h. The main structure is defined in
getfem/getfem_mesh.h by the object getfem::mesh.

This object is able to store any element in any dimension even if you mix elements with different dimen-
sions.

There is only a (very) experimental meshing procedure in GetFEM to mesh complex geometries. But
you can easily load a mesh from any format (some procedures are in getfem/getfem_import.h
to load meshes from some public domain mesh generators).

The structure getfem::mesh may also contain a description about a region of the mesh, such as
a boundary or a set of elements. This is handled via a container of convexes and convex faces,
getfem::mesh_region. We refer to [remacle2003] for a discussion on mesh representation.

6.1 Add an element to a mesh

Suppose the variable mymesh has been declared by:

getfem::mesh mymesh;

then you have two ways to insert a new element to this mesh: from a list of points or from a list of
indexes of already existing points.

To enter a new point on a mesh use the method:

i = mymesh.add_point(pt);

where pt is of type bgeot::base_node. The index i is the index of this point on the mesh. If the
point already exists in the mesh, a new point is not inserted and the index of the already existing point
is returned. A mesh has a principal dimension, which is the dimension of its points. It is not possible to
have points of different dimensions in a same mesh.

13

http://getfem.org/getfem_reference/index.html

User Documentation, Release 5.4.2

The most basic function to add a new element to a mesh is:

j = mymesh.add_convex(pgt, it);

This is a template function, with pgt of type bgeot::pgeometric_trans (basically a pointer to
an instance of type bgeot::geometric_trans) and it is an iterator on a list of indexes of already
existing points. For instance, if one needs to add a new triangle in a 3D mesh, one needs to define first
an array with the indexes of the three points:

std::vector<bgeot::size_type> ind(3);
ind[0] = mymesh.add_point(bgeot::base_node(0.0, 0.0, 0.0));
ind[1] = mymesh.add_point(bgeot::base_node(0.0, 1.0, 0.0));
ind[2] = mymesh.add_point(bgeot::base_node(0.0, 0.0, 1.0));

then adding the element is done by:

mymesh.add_convex(bgeot::simplex_geotrans(2,1), ind.begin());

where bgeot::simplex_geotrans(N,1); denotes the usual linear geometric transformation for
simplices of dimension N.

For simplices, a more specialized function exists, which is:

mymesh.add_simplex(2, ind.begin());

It is also possible to give directly the list of points with the function:

mymesh.add_convex_by_points(pgt, itp);

where now itp is an iterator on an array of points. For example:

std::vector<bgeot::base_node> pts(3);
pts[0] = bgeot::base_node(0.0, 0.0, 0.0);
pts[1] = bgeot::base_node(0.0, 1.0, 0.0);
pts[2] = bgeot::base_node(0.0, 0.0, 1.0);
mymesh.add_convex_by_points(bgeot::simplex_geotrans(2,1), pts.begin());

It is possible to use also:

mymesh.add_simplex_by_points(2, pts.begin());

For other elements than simplices, it is still possible to use mymesh.add_convex_by_points or
mymesh.add_convex with the appropriate geometric transformation.

• bgeot::parallelepiped_geotrans(N, 1) describes the usual transformation for par-
allelepipeds of dimension N (quadrilateron for N=2, hexahedron for N=3, . . .)

• bgeot::prism_geotrans(N, 1) describes the usual transformation for prisms of dimen-
sion N (usual prism is for N=3. A generalized prism is the product of a simplex of dimension N-1
with a segment)

Specialized functions exist also:

mymesh.add_parallelepiped(N, it);
mymesh.add_parallelepiped_by_points(N, itp);
mymesh.add_prism(N, it);
mymesh.add_prism_by_points(N, itp);

14 Chapter 6. Build a mesh

User Documentation, Release 5.4.2

The order of the points in the array of points is not important for simplices (except if you care about the
orientation of your simplices). For other elements, it is important to respect the vertex order shown in
Vertex numeration for usual first order elements (first order elements).

Fig. 1: Vertex numeration for usual first order elements

Note that a general rule, including for higher order transformations, is that the vertex numeration follows
the one of the corresponding Lagrange finite element method (see Appendix A. Finite element method
list).

6.2 Remove an element from a mesh

To remove an element from a mesh, simply use:

mymesh.sup_convex(i);

where i is the index of the element.

6.3 Simple structured meshes

For parallelepiped domains, it is possible to obtain structured meshes with simplices, parallelepipeds or
prisms elements from three functions defined in getfem/getfem_regular_meshes.h.

The simplest function to use is:

void regular_unit_mesh(mesh& m, std::vector<size_type> nsubdiv,
bgeot::pgeometric_trans pgt, bool noised = false);

which fills the mesh m with a regular mesh of simplices/parallelepipeds/prisms (depending on the value
of pgt). The number of cells in each direction is given by nsubdiv. The following example builds a
mesh of quadratic triangles on the unit square (the mesh can be scaled and translated afterwards):

6.2. Remove an element from a mesh 15

User Documentation, Release 5.4.2

std::vector<getfem::size_type> nsubdiv(2);
nsubdiv[0] = 10; nsubdiv[1] = 20;
regular_unit_mesh(m, nsubdiv, bgeot::simplex_geotrans(2,2));

More specialized regular mesh functions are also available:

getfem::parallelepiped_regular_simplex_mesh(mymesh, N, org, ivect, iref);
getfem::parallelepiped_regular_prism_mesh(mymesh, N, org, ivect, iref);
getfem::parallelepiped_regular_pyramid_mesh(mymesh, N, org, ivect, iref);
getfem::parallelepiped_regular_mesh(mymesh, N, org, ivect, iref);

where mymesh is a mesh variable in which the structured mesh will be built, N is the dimension (limited
to 4 for simplices, 5 for prisms, unlimited for parallelepipeds), org is of type bgeot::base_node
and represents the origin of the mesh, ivect is an iterator on an array of N vectors to build the paral-
lelepiped domain, iref is an iterator on an array of N integers representing the number of division on
each direction.

For instance, to build a mesh with tetrahedrons for a unit cube with 10× 10× 10 cells one can write:

getfem::mesh mymesh;
bgeot::base_node org(0.0, 0.0, 0.0);
std::vector<bgeot::base_small_vector> vect(3);
vect[0] = bgeot::base_small_vector(0.1, 0.0, 0.0);
vect[1] = bgeot::base_small_vector(0.0, 0.1, 0.0);
vect[2] = bgeot::base_small_vector(0.0, 0.0, 0.1);
std::vector<int> ref(3);
ref[0] = ref[1] = ref[2] = 10;
getfem::parallelepiped_regular_simplex_mesh(mymesh, 3, org, vect.begin(),
→˓ref.begin());

Note: base_node and base_small_vector are almost identical, they are both ‘’small” vector
classes (they cannot store more than 16 elements), used to describe geometrical points, and geometrical
vectors. Their memory footprint is lower than a std::vector.

6.4 Mesh regions

A mesh object can contain many getfem::mesh_region objects (declaration in getfem/
getfem_mesh_region.h). These objects are containers for a set of convexes and convex faces.
They are used to define boundaries, or a partition of the mesh for parallel solvers, etc.:

mymesh.region(30).add(2); // adds convex 2 into region 30
mymesh.region(30).add(3); // adds convex 3 into region 30
mymesh.region(30).add(4,3); // adds face 3 of convex 4 into region 30
mymesh.region(30).sup(3); // Removes convex 3 from region 30
mymesh.sup_convex(4); // Removes convex 4 from both the mesh and all
→˓the regions
for (getfem::mr_visitor i(mymesh.region(30)); !i.finished(); ++i) {

cout << "convex: " << i.cv() << " face:" << i.f() << endl;
}

16 Chapter 6. Build a mesh

User Documentation, Release 5.4.2

6.5 Methods of the getfem::mesh object

The list is not exhaustive.

getfem::mesh::dim()
main dimension of the mesh.

getfem::mesh::points_index()
gives a dal::bit_vector object which represents all the indexes of valid points of a mesh
(see below).

getfem::mesh::points()
gives the point of each index (a bgeot::base_node).

getfem::mesh::convex_index()
gives a dal::bit_vector object which represents all the indexes of valid elements of a mesh
(see below).

bgeot::mesh_structure::structure_of_convex(i)
gives the description of the structure of element of index i. The function return a
bgeot::pconvex_structure.

bgeot::convex_structure::nb_faces()
number of faces of bgeot::pconvex_structure.

bgeot::convex_structure::nb_points()
number of vertices of bgeot::pconvex_structure.

bgeot::convex_structure::dim()
intrinsic dimension of bgeot::pconvex_structure.

bgeot::convex_structure::nb_points_of_face(f)
number of vertices of the face of local index f of bgeot::pconvex_structure.

bgeot::convex_structure::ind_points_of_face(f)
return a container with the local indexes of all vertices of the face of lo-
cal index f of bgeot::pconvex_structure. For instance mesh.
structure_of_convex(i)->ind_points_of_face(f)[0] is the local index of
the first vertex.

bgeot::convex_structure::face_structure(f)
gives the structure (a bgeot::pconvex_structure) of local index f of
bgeot::pconvex_structure.

getfem::mesh::ind_points_of_convex(i)
gives a container with the global indexes of vertices of bgeot::pconvex_structure.

getfem::mesh::points_of_convex(i)
gives a container with the vertices of bgeot::pconvex_structure. This is an array of
bgeot::base_node.

getfem::mesh::convex_to_point(ipt)
gives a container with the indexes of all elements attached to the point of global index ipt.

getfem::mesh::neighbors_of_convex(ic, f)
gives a container with the indexes of all elements in mesh having the common face of local index
f of element ic except element ic.

6.5. Methods of the getfem::mesh object 17

User Documentation, Release 5.4.2

getfem::mesh::neighbor_of_convex(ic, f)
gives the index of the first elements in mesh having the common face of local index f of element
ic except element ic. return size_type(-1) if none is found.

getfem::mesh::is_convex_having_neighbor(ic, f)
return whether or not the element ic has a neighbor with respect to its face of local index f.

getfem::mesh::clear()
delete all elements and points from the mesh.

getfem::mesh::optimize_structure()
compact the structure (renumbers points and convexes such that there is no hole in their number-
ing).

getfem::mesh::trans_of_convex(i)
return the geometric transformation of the element of index i (in a
bgeot::pgeometric_trans). See dp for more details about geometric transforma-
tions.

getfem::mesh::normal_of_face_of_convex(ic, f, pt)
gives a bgeot::base_small_vector representing an outward normal to the element at the
face of local index f at the point of local coordinates (coordinates in the element of reference) pt.
The point pt has no influence if the geometric transformation is linear. This is not a unit normal,
the norm of the resulting vector is the ratio between the surface of the face of the reference element
and the surface of the face of the real element.

getfem::mesh::convex_area_estimate(ic)
gives an estimate of the area of convex ic.

getfem::mesh::convex_quality_estimate(ic)
gives a rough estimate of the quality of element ic.

getfem::mesh::convex_radius_estimate(ic)
gives an estimate of the radius of element ic.

getfem::mesh::region(irg)
return a getfem::mesh_region. The region is stored in the mesh, and can contain a set of
convex numbers and or convex faces.

getfem::mesh::has_region(irg)
returns true if the region of index irg has been created.

The methods of the convexes/convex faces container getfem::mesh_region are:

getfem::mesh_region::add(ic)
add the convex of index ic to the region.

getfem::mesh_region::add(ic, f)
add the face number f of the convex ic.

getfem::mesh_region::sup(ic)

getfem::mesh_region::sup(ic, f)
remove the convex or the convex face from the region.

getfem::mesh_region::is_in(ic)

getfem::mesh_region::is_in(ic, f)
return true if the convex (or convex face) is in the region.

18 Chapter 6. Build a mesh

User Documentation, Release 5.4.2

getfem::mesh_region::is_only_faces()
return true if the region does not contain any convex.

getfem::mesh_region::is_only_convexes()
return true if the region does not contain any convex face.

getfem::mesh_region::index()
return a dal::bit_vector containing the list of convexes which are stored (or whose faces
are stored) in the region.

Iteration over a getfem::mesh_region should be done with getfem::mr_visitor:

getfem::mesh_region &rg = mymesh.region(2);
for (getfem::mr_visitor i(rg); !i.finished(); ++i) {

cout << "contains convex " < < i.cv();
if (i.is_face()) cout << "face " << i.f() << endl;

}

6.6 Using dal::bit_vector

The object dal::bit_vector (declared in getfem/dal_bit_vector.h) is a structure heavily
used in GetFEM. It is very close to std::bitset and std::vector<bool> but with additional
functionalities to represent a set of non negative integers and iterate over them.

If nn is declared to be a dal::bit_vector, the two instructions nn.add(6) or nn[6] = true
are equivalent and means that integer 6 is added to the set.

In a same way nn.sup(6) or nn[6] = false remove the integer 6 from the set. The instruction
nn.add(6, 4) adds 6,7,8,9 to the set.

To iterate on a dal::bit_vector, it is possible to use iterators as usual, but, most of the time, as
this object represents a set of integers, one just wants to iterate on the integers included into the set. The
simplest way to do that is to use the pseudo-iterator dal::bv_visitor.

For instance, here is the code to iterate on the points of a mesh and print it to the standard output:

for (dal::bv_visitor i(mymesh.points_index()); !i.finished(); ++i)
cout << "Point of index " << i << " of the mesh: " << mymesh.points()[i]

→˓<< endl;

6.7 Face numbering

The numeration of faces on usual elements is given in figure faces numeration for usual elements.

Note that, while the convexes and the points are globally numbered in a getfem::mesh object, there
is no global numbering of the faces, so the only way to refer to a given face, is to give the convex number,
and the local face number in the convex.

6.6. Using dal::bit_vector 19

User Documentation, Release 5.4.2

Fig. 2: faces numeration for usual elements

6.8 Save and load meshes

6.8.1 From GetFEM file format

In getfem/getfem_mesh.h, two methods are defined to load meshes from file and write meshes to
a file.

getfem::mesh::write_to_file(const std::string &name)
save the mesh into a file.

getfem::mesh::read_from_file(const std::string &name)
load the mesh from a file.

The following is an example of how to load a mesh and extract information on it:

#include <getfem/getfem_mesh.h>

getfem::mesh mymesh;

int main(int argc, char *argv[]) {
try {

// read the mesh from the file name given by the first argument
mymesh.read_from_file(std::string(argv[1]));

// List all the convexes
dal::bit_vector nn = mymesh.convex_index();
bgeot::size_type i;
for (i << nn; i != bgeot::size_type(-1); i << nn) {
cout << "Convex of index " << i << endl;

(continues on next page)

20 Chapter 6. Build a mesh

User Documentation, Release 5.4.2

(continued from previous page)

bgeot::pconvex_structure cvs = mymesh.structure_of_convex(i);
cout << "Number of vertices: " << cvs->nb_points() << endl;
cout << "Number of faces: " << cvs->nb_faces() << endl;
for (bgeot::short_type f = 0; f < cvs->nb_faces(); ++f) {

cout << "face " << f << " has " << cvs->nb_points_of_face(f);
cout << " vertices with local indexes: ";
for (bgeot::size_type k = 0; k < cvs->nb_points_of_face(f); ++k)

cout << cvs->ind_points_of_face(f)[k] << " ";
cout << " and global indexes: ";
for (bgeot::size_type k = 0; k < cvs->nb_points_of_face(f); ++k)

cout << mymesh.ind_points_of_convex(i)[cvs->ind_points_of_
→˓face(f)[k]] << " ";

}
}

} GMM_STANDARD_CATCH_ERROR; // catches standard errors
}

6.8.2 Import a mesh

The file getfem/getfem_import.h provides the function:

void import_mesh(const std::string& fmtfilename, mesh& m);

Here the string fmtfilename must contain a descriptor of the file format (“gid”, “gmsh”, “cdb”,
“noboite”, “am_fmt”, “emc2_mesh”, or “structured”), followed by a colon and the file name
(if there is not format descriptor, it is assumed that the file is a native getfem mesh and the
mesh::read_from_file() method is used). Example:

getfem::mesh m;
getfem::import_mesh("gid:../tests/meshes/tripod.GiD.msh",m);

Alternatively the function:

void import_mesh(const std::string& filename, const std::string& fmt,
mesh& m);

can be used in an equivalent manner with the string fmt being one of the aforementioned format speci-
fiers.

The “gid” format specifier is for meshes generated by GiD and “gmsh” is for meshes generated by the
open-source mesh generator Gmsh. The “cdb” format specifier is for reading meshes from ANSYS
models exported in blocked format with the CDWRITE command. Currently the ANSYS element types
42,45,73,82,87,89,90,92,95,162,182,183,185,186,187 and 191 can be imported, this however does not
include any finite element techology linked to these elements but only their geometry. The “noboite”
format is for TetMesh-GHS3D, and the “am_fmt” and “emc2_mesh” are for files built with EMC2 (but
2D only).

The “structured” format is just a short specification for regular meshes: the rest of fmtfilename in
that case is not a filename, but a string whose format is following:

getfem::import_mesh("structured:GT='GT_PK(2,1)';"
"NSUBDIV=[5,5];"
"ORG=[0,0];"

(continues on next page)

6.8. Save and load meshes 21

http://gid.cimne.upc.es
http://www.geuz.org/gmsh
http://www.ansys.com
http://www.ansys.com
http://www-rocq1.inria.fr/gamma/cdrom/www/emc2/eng.htm

User Documentation, Release 5.4.2

(continued from previous page)

"SIZES=[1,1];"
"NOISED=0", m);

where GT is the name of the geometric transformation, NSUBDIV a vector of the number of subdivisions
in each coordinate (default value 2), ORG is the origin of the mesh (default value [0,0,...]), SIZES
is a vector of the sizes in each direction (default value [1, 1, ...] and if NOISED=1 the nodes
of the interior of the mesh are randomly “shaken” (default value NOISED=0). In that string, all the
parameters are optional except GT.

22 Chapter 6. Build a mesh

CHAPTER 7

Build a finite element method on a mesh

The object getfem::mesh_fem defined in getfem/getfem_mesh_fem.h is designed to de-
scribe a finite element method on a whole mesh, i.e. to describe the finite element space on which some
variables will be described. This is a rather complex object which is central in GetFEM. Basically, this
structure describes the finite element method on each element of the mesh and some additional optional
transformations. It is possible to have an arbitrary number of finite element descriptions for a single
mesh. This is particularly necessary for mixed methods, but also to describe different data on the same
mesh. One can instantiate a getfem::mesh_fem object as follows:

getfem::mesh_fem mf(mymesh);

where mymesh is an already existing mesh. The structure will be linked to this mesh and will react
when modifications will be done on it.

It is possible to specify element by element the finite element method, so that element of mixed types
can be treated, even if the dimensions are different. For usual elements, the connection between two
elements is done when the two elements are compatibles (same degrees of freedom on the common face).
A numeration of the degrees of freedom is automatically done with a Cuthill Mc Kee like algorithm. You
have to keep in mind that there is absolutely no connection between the numeration of vertices of the
mesh and the numeration of the degrees of freedom. Every getfem::mesh_fem object has its own
numeration.

There are three levels in the getfem::mesh_fem object:

• The element level: one finite element method per element. It is possible to mix the dimensions of
the elements and the property to be vectorial or scalar.

• The optional vectorization/tensorization (the qdim in getfem jargon, see vocabulary). For instance
to represent a displacement or a tensor field in continuum mechanics. Scalar elements are used
componentwise. Note that you can mix some intrinsic vectorial elements (Raviart-Thomas ele-
ment for instance) which will not be vectorized and scalar elements which will be.

• (GetFEM version 4.0) The optional additional linear transformation (reduction) of the degrees
of freedom. It will consist in giving two matrices, the reduction matrix and the extension matrix.
The reduction matrix should transform the basic dofs into the reduced dofs (the number of reduced

23

http://getfem.org/getfem_reference/index.html

User Documentation, Release 5.4.2

dofs should be less or equal than the number of basic dofs). The extension matrix should describe
the inverse transformation. The product of the reduction matrix with the extension matrix should
be the identity matrix (ensuring in particular that the two matrices are of maximal rank). This
optional transformation can be used to reduce the finite element space to a certain region (tipically
a boundary) or to prescribe some matching conditions between non naturally compatible fems (for
instance fems with different degrees).

One has to keep in mind this construction manipulating the degrees of freedom of a
getfem::mesh_fem object.

7.1 First level: manipulating fems on each elements

To select a particular finite element method on a given element, use the method:

mf.set_finite_element(i, pf);

where i is the index of the element and pf is the descriptor (of type getfem::pfem, basically a
pointer to an object which inherits from getfem::virtual_fem) of the finite element method.
Alternative forms of this member function are:

void mesh_fem::set_finite_element(const dal::bit_vector &cvs,
getfem::pfem pf);

void mesh_fem::set_finite_element(getfem::pfem pf);

which set the finite elements for either the convexes listed in the bit_vector cvs, or all the convexes
of the mesh. Note that the last method makes a call to the method:

void mesh_fem::set_auto_add(pfem pf);

which defines the default finite element method which will be automatically added on new elements of
the mesh (this is very useful, for instance, when a refinement of the mesh is performed).

Descriptors for finite element methods and integration methods are available thanks to the following
function:

getfem::pfem pf = getfem::fem_descriptor("name of method");

where "name of method" is to be chosen among the existing methods. A name of a method can be
retrieved thanks to the following functions:

std::string femname = getfem::name_of_fem(pf);

A non exhaustive list (see Appendix A. Finite element method list or getfem/getfem_fem.h for
exhaustive lists) of finite element methods is given by:

• "FEM_PK(n,k)": Classical 𝑃𝐾 methods on simplexes of dimension n with degree k polyno-
mials.

• "FEM_QK(n,k)": Classical 𝑄𝐾 methods on parallelepiped of dimension n. Tensorial product
of degree k 𝑃𝐾 method on the segment.

• "FEM_PK_PRISM(n,k)": Classical methods on prism of dimension n. Tensorial product of
two degree k 𝑃𝐾 method.

24 Chapter 7. Build a finite element method on a mesh

User Documentation, Release 5.4.2

• "FEM_PRODUCT(a,b)": Tensorial product of the two polynomial finite element method a and
b.

• "FEM_PK_DISCONTINUOUS(n,k)": discontinuous 𝑃𝐾 methods on simplexes of dimension
n with degree k polynomials.

An alternative way to obtain a Lagrange polynomial fem suitable for a given geometric transformation
is to use:

getfem::pfem getfem::classical_fem(bgeot::pgeometric_trans pg,
short_type degree);

getfem::pfem getfem::classical_discontinuous_fem(bgeot::pgeometric_trans
→˓pg,

short_type degree);

The mesh_fem can call directly these functions via:

void mesh_fem::set_classical_finite_element(const dal::bit_vector &cvs,
dim_type fem_degree);

void mesh_fem::set_classical_discontinuous_finite_element(const dal::bit_
→˓vector &cvs,

dim_type fem_
→˓degree);
void mesh_fem::set_classical_finite_element(dim_type fem_degree);
void mesh_fem::set_classical_discontinuous_finite_element(dim_type fem_
→˓degree);

Some other methods:

getfem::mesh_fem::convex_index()
Set of indexes (a dal::bit_vector) on which a finite element method is defined.

getfem::mesh_fem::linked_mesh()
gives a reference to the linked mesh.

getfem::mesh_fem::fem_of_element(i)
gives a descriptor on the finite element method defined on element of index i (does not take into
account the qdim nor the optional reduction).

getfem::mesh_fem::clear()
Clears the structure, no finite element method is still defined.

7.2 Examples

For instance if one needs to have a description of a 𝑃1 finite element method on a triangle, the way to
set it is:

mf.set_finite_element(i, getfem::fem_descriptor("FEM_PK(2, 1)"));

where i is still the index of the triangle. It is also possible to select a particular method directly on a
set of element, passing to mf.set_finite_element a dal::bit_vector instead of a single
index. For instance:

mf.set_finite_element(mymesh.convex_index(),
getfem::fem_descriptor("FEM_PK(2, 1)"));

7.2. Examples 25

User Documentation, Release 5.4.2

selects the method on all the elements of the mesh.

7.3 Second level: the optional “vectorization/tensorization”

If the finite element represents an unknown which is a vector field, the method mf.set_qdim(Q)
allows set the target dimension for the definition of the target dimension 𝑄.

If the target dimension 𝑄 is set to a value different of 1, the scalar FEMs (such as 𝑃𝑘 fems etc.) are
automatically “vectorized” from the mesh_fem object point of view, i.e. each scalar degree of freedom
appears 𝑄 times in order to represent the 𝑄 components of the vector field. If an intrinsically vectorial
element is used, the target dimension of the fem and the one of the mesh_fem object have to match. To
sum it up,

• if the fem of the 𝑖𝑡ℎ element is intrinsically a vector FEM, then:

mf.get_qdim() == mf.fem_of_element(i)->target_dim()
&&
mf.nb_dof_of_element(i) == mf.fem_of_element(i).nb_dof()

• if the fem has a target_dim equal to 1, then:

mf.nb_dof_of_element(i) == mf.get_qdim()*mf.fem_of_element(i).nb_dof()

Additionally, if the field to be represented is a tensor field instead of a vector field (for instance the stress
or strain tensor field in elasticity), it is possible to specify the tensor dimensions with the methods:

mf.set_qdim(dim_type M, dim_type N)
mf.set_qdim(dim_type M, dim_type N, dim_type O, dim_type P)
mf.set_qdim(const bgeot::multi_index &mii)

respectively for a tensor field of order two, four and arbitrary (but limited to 6). For most of the opera-
tions, this is equivalent to declare a vector field of the size the product of the dimensions. However, the
declared tensor dimensions are taken into account into the high level generic assembly. Remember that
the components inside a tensor are stored in Fortran order.

At this level are defined the basic degrees of freedom. Some methods of the getfem::mesh_fem
allows to obtain information on the basic dofs:

getfem::mesh_fem::nb_basic_dof_of_element(i)
gives the number of basic degrees of freedom on the element of index i.

getfem::mesh_fem::ind_basic_dof_of_element(i)
gives a container (an array) with all the global indexes of the basic degrees of freedom of element
of index i.

getfem::mesh_fem::point_of_basic_dof(i, j)
gives a bgeot::base_node which represents the point associated with the basic dof of local
index j on element of index i.

getfem::mesh_fem::point_of_basic_dof(j)
gives a bgeot::base_node which represents the point associated with the basic dof of global
index j.

getfem::mesh_fem::reference_point_of_basic_dof(i, j)
gives a bgeot::base_node which represents the point associated with the basic dof of local
index j on element of index i in the coordinates of the reference element.

26 Chapter 7. Build a finite element method on a mesh

User Documentation, Release 5.4.2

getfem::mesh_fem::first_convex_of_basic_dof(j)
gives the index of the first element on which the basic degree of freedom of global index j is
defined.

getfem::mesh_fem::nb_basic_dof()
gives the total number of different basic degrees of freedom.

getfem::mesh_fem::get_qdim()
gives the target dimension Q.

getfem::mesh_fem::basic_dof_on_region(i)
Return a dal::bit_vector which represents the indices of basic dof which are in the set of
convexes or the set of faces of index i (see the getfem::mesh object).

getfem::mesh_fem::dof_on_region(i)
Return a dal::bit_vector which represents the indices of dof which are in the set of con-
vexes or the set of faces of index i (see the getfem::mesh object). For a reduced mesh_fem,
a dof is lying on a region if its potential corresponding shape function is nonzero on this region.
The extension matrix is used to make the correspondence between basic and reduced dofs.

7.4 Third level: the optional linear transformation (or reduction)

As described above, it is possible to provide two matrices, a reduction matrix 𝑅 and an extension matrix
𝐸 which will describe a linear transformation of the degrees of freedom. If 𝑉 is the vector of basic
degrees of freedom, then 𝑈 = 𝑅𝑉 will be the vector of reduced degrees of freedom. Contrarily, given a
vector 𝑈 of reduced dof, 𝑉 = 𝐸𝑈 will correspond to a vector of basic dof. In simple cases, 𝐸 will be
simply the transpose of 𝑅. NOTE that every line of the extension matrix should be sparse. Otherwise,
each assembled matrix will be plain !

A natural condition is that 𝑅𝐸 = 𝐼 where 𝐼 is the identity matrix.

getfem::mesh_fem::nb_dof()
gives the total number of different degrees of freedom. If the optional reduction is used, this will
be the number of columns of the reduction matrix. Otherwise it will return the number of basic
degrees of freedom.

getfem::mesh_fem::is_reduced()
return a boolean. True if the reduction is used.

getfem::mesh_fem::reduction_matrix()
return a const reference to the reduction matrix 𝑅.

getfem::mesh_fem::extension_matrix()
return a const reference to the extension matrix 𝐸.

getfem::mesh_fem::set_reduction_matrices(R, E)
Set the reduction and extension matrices to R and E and validate their use.

getfem::mesh_fem::set_reduction(b)
Where 𝑏 is a boolean. Cancel the reduction if 𝑏 is false and validate it if b is true. If b is true, the
extension and reduction matrices have to be set previously.

getfem::mesh_fem::reduce_to_basic_dof(idof)
Set the reduction and extension matrices corresponding to keep only the basic dofs present in
idof. The parameter idof is either a dal::bit_vector or a std::set<size_type>.
This is equivalent to the use of a getfem::partial_mesh_fem object.

7.4. Third level: the optional linear transformation (or reduction) 27

User Documentation, Release 5.4.2

7.5 Obtaining generic mesh_fem’s

It is possible to use the function:

const mesh_fem &getfem::classical_mesh_fem(const getfem::mesh &mymesh, dim_
→˓type K);

to get a classical polynomial mesh_fem of order 𝐾 on the given mymesh. The returned mesh_fem will
be destroyed automatically when its linked mesh is destroyed. All the mesh_fem built by this function
are stored in a cache, which means that calling this function twice with the same arguments will return
the same mesh_fem object. A consequence is that you should NEVER modify this mesh_fem!

7.6 The partial_mesh_fem object

The getfem::partial_mesh_fem object defined in the file getfem_partial_mesh_fem.h
allows to reduce a getfem::mesh_fem object to a set of dofs. The interest is this is not a complete
description of a finite element method, it refers to the original getfem::mesh_fem and just add
reduction and extension matrices. For instance, you can reduce a mesh_fem obtained by the function
getfem::classical_mesh_fem(mesh, K) to obtain a finite element method on a mesh region
(which can be a boundary). The getfem::partial_mesh_fem is in particular used to obtain
multiplier description to prescribed boundary conditions.

The declaration of a getfem::partial_mesh_fem object is the following:

getfem::partial_mesh_fem partial_mf(mf);

Then, one has to call the adapt method as follows:

partial_mf.adapt(kept_dof, rejected_elt = dal::bit_vector());

where kept_dof and rejected_elt are some dal::bit_vector. kept_dof is the list of dof
indices of the original mesh_fem mf to be kept. rejected_elt is an optional parameter that contains
a list of element indices on which the getfem::partial_mesh_fem states that there is no finite
element method. This is to avoid unnecessary computations during assembly procedures.

28 Chapter 7. Build a finite element method on a mesh

CHAPTER 8

Selecting integration methods

The description of an integration method on a whole mesh is done thanks to the structure
getfem::mesh_im, defined in the file getfem/getfem_mesh_im.h. Basically, this struc-
ture describes the integration method on each element of the mesh. One can instantiate a
getfem::mesh_im object as follows:

getfem::mesh_im mim(mymesh);

where mymesh is an already existing mesh. The structure will be linked to this mesh and will react
when modifications will be done on it (for example when the mesh is refined, the integration method
will be also refined).

It is possible to specify element by element the integration method, so that element of mixed types can
be treated, even if the dimensions are different.

To select a particular integration method on a given element, one can use:

mim.set_integration_method(i, ppi);

where i is the index of the element and ppi is the descriptor of the integration method. Alternative
forms of this member function are:

void mesh_im::set_integration_method(const dal::bit_vector &cvs,
getfem::pintegration_method ppi);

void mesh_im::set_integration_method(getfem::pintegration_method ppi);

which set the integration method for either the convexes listed in the bit_vector cvs, or all the convexes
of the mesh.

The list of all available descriptors of integration methods is in the file getfem/
getfem_integration.h. Descriptors for integration methods are available thanks to the
following function:

getfem::pintegration_method ppi = getfem::int_method_descriptor("name of
→˓method");

29

User Documentation, Release 5.4.2

where "name of method" is to be chosen among the existing methods. A name of a method can be
retrieved with:

std::string im_name = getfem::name_of_int_method(ppi);

A non exhaustive list (see Appendix B. Cubature method list or getfem/getfem_integration.h
for exhaustive lists) of integration methods is given below.

Examples of exact integration methods:

• "IM_NONE()": Dummy integration method (new in getfem++-1.7).

• "IM_EXACT_SIMPLEX(n)": Description of the exact integration of polynomials on the sim-
plex of reference of dimension n.

• "IM_PRODUCT(a, b)": Description of the exact integration on the convex which is the direct
product of the convex in a and in b.

• "IM_EXACT_PARALLELEPIPED(n)": Description of the exact integration of polynomials on
the parallelepiped of reference of dimension n

• "IM_EXACT_PRISM(n)": Description of the exact integration of polynomials on the prism of
reference of dimension n

Examples of approximated integration methods:

• "IM_GAUSS1D(k)": Description of the Gauss integration on a segment of order k. Available
for all odd values of k <= 99.

• "IM_NC(n,k)": Description of the integration on a simplex of reference of dimension n for
polynomials of degree k with the Newton Cotes method (based on Lagrange interpolation).

• "IM_PRODUCT(a,b)": Build a method doing the direct product of methods a and b.

• "IM_TRIANGLE(2)": Integration on a triangle of order 2 with 3 points.

• "IM_TRIANGLE(7)": Integration on a triangle of order 7 with 13 points.

• "IM_TRIANGLE(19)": Integration on a triangle of order 19 with 73 points.

• "IM_QUAD(2)": Integration on quadrilaterals of order 2 with 3 points.

• "IM_GAUSS_PARALLELEPIPED(2,3)": Integration on quadrilaterals of order 3 with 4
points (shortcut for "IM_PRODUCT(IM_GAUSS1D(3),IM_GAUSS1D(3))").

• "IM_TETRAHEDRON(5)": Integration on a tetrahedron of order 5 with 15 points.

Note: Note that "IM_QUAD(3)" is not able to integrate exactly the base functions of the
"FEM_QK(2,3)" finite element! Since its base function are tensorial product of 1D poly-
nomials of degree 3, one would need to use "IM_QUAD(7)" (6 is not available). Hence
"IM_GAUSS_PARALLELEPIPED(2,k)" should always be preferred over "IM_QUAD(2*k)"
since it has less integration points.

An alternative way to obtain integration methods:

getfem::pintegration_method ppi =
getfem::classical_exact_im(bgeot::pgeometric_trans pgt);

(continues on next page)

30 Chapter 8. Selecting integration methods

User Documentation, Release 5.4.2

(continued from previous page)

getfem::pintegration_method ppi =
getfem::classical_approx_im(bgeot::pgeometric_trans pgt, dim_type d);

These functions return an exact (i.e. analytical) integration method, or select an approximate integration
method which is able to integrate exactly polynomials of degree <= d (at least) for convexes defined
with the specified geometric transformation.

8.1 Methods of the mesh_im object

Once an integration method is defined on a mesh, it is possible to obtain information on it with the
following methods (the list is not exhaustive).

mim.convex_index()
Set of indexes (a dal::bit_vector) on which an integration method is defined.

mim.linked_mesh()
Gives a reference to the linked mesh.

mim.int_method_of_element(i)
Gives a descriptor on the integration method defined on element of index i.

mim.clear()
Clear the structure. There are no further integration method defined on the mesh.

8.1. Methods of the mesh_im object 31

User Documentation, Release 5.4.2

32 Chapter 8. Selecting integration methods

CHAPTER 9

Mesh refinement

Mesh refinement with the Bank et all method (see [bank1983]) is available in dimension 1, 2 or
3 for simplex meshes (segments, triangles and tetrahedrons). For a given object mymesh of type
getfem::mesh, the method:

mymesh.Bank_refine(bv);

refines the elements whose indices are stored in bv (a dal::bit_vector object). The conformity of
the mesh is kept thanks to additional refinement (the so called green triangles). Information about green
triangles (in Figure Example of Bank refinement in 2D) is stored on the mesh object to gather them for
further refinements (see [bank1983]).

Fig. 1: Example of Bank refinement in 2D

Mesh refinement is most of the time coupled with an a posteriori error estimate. A very basic error
estimate is available in the file getfem/getfem_error_estimate.h:

error_estimate(mim, mf, U, err, rg);

where mim is the integration method (a getfem::mesh_im object), mf is the finite element method
on which the unknown has been computed (a getfem::mesh_fem object), U is the vector of degrees
of freedom of the unknown, err is a sufficiently large vector in which the error estimate is computed
for each element of the mesh, and rg is a mesh region bulild from elements on which the error estimate
should be computed (a getfem::mesh_region object).

This basic error estimate is only valid for order two problems and just compute the sum of the jump in
normal derivative across the elements on each edge (for two-dimensional problems) or each face (for

33

User Documentation, Release 5.4.2

three-dimensional problems). This means that for each face 𝑒 of the mesh the following quantity is
computed: ∫︁

𝑒
|[[𝜕𝑛𝑢]]|2𝑑Γ,

where [[𝜕𝑛𝑢]] is the jump of the normal derivative. Then, the error estimate for a given element is the
sum of the computed quantities on each internal face multiplied by the element diameter. This basic
error estimate can be taken as a model for more elaborated ones. It uses the high-level generic assembly
and the neighbor_element interpolate transformation (see Evaluating discontinuities across inter-
element edges/faces).

34 Chapter 9. Mesh refinement

CHAPTER 10

Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

This section presents what is now the main generic assembly of GetFEM. It is a high-level generic
assembly in the sense that it is based on Generic Weak Form Language (GWFL, [GetFEM2020]) to
describe the weak formulation of boundary value problems of partial differential equations. A symbolic
differentiation algorithm is used. It simplifies a lot the approximation of nonlinear coupled problems
since only the weak form is necessary to be described, the tangent system being automatically computed.
Moreover, GWFL is compiled into optimized instructions before the evaluation on each integration point
in order to obtain a an optimal computational cost.

The header file to be included to use the high-level generic assembly procedures in C++ is getfem/
generic_assembly.h.

10.1 Overview of GWFL

Another description of the main principles can be found in [GetFEM2020].

A specific weak form language has been developed to describe the weak formulation of boundary value
problems. It is intended to be close to the structure of a standard weak formulation and it incorporates
the following components:

• Variable names: A list of variables should be given. The variables are described on a finite
element method or can be a simple vector of unknowns. For instance u, v, p, pressure,
electric_field are valid variable names.

• Constant names: A list of constants could be given. The rules are the same as for the variables but
no test functions can be associated to constants.

• Test functions: Can be used with respect to any of the variables. They are identified by the
prefix Test_ followed by the corresponding variable name. For instance Test_u, Test_v,
Test_p, Test_pressure, Test_electric_field. For the tangent system, second order
test functions are denoted Test2_ followed by the variable name.

35

User Documentation, Release 5.4.2

• Gradients: Spatial gradients of variables or test functions are identified by the prefix Grad_
followed by the variable name or by Test_ or Test2_ followed itself by the variable
name. This is available for FEM variables only. For instance Grad_u, Grad_pressure,
Grad_electric_field and Grad_Test_u, Grad_Test2_v. For vector fields, Div_u
and Div_Test_u are some shortcuts for Trace(Grad_u) and Trace(Grad_Test_u),
respectively.

• Hessians: The Hessian of a variable or test function is identified by the prefix Hess_ followed
by the variable name or by Test_ or Test2_ followed itself by the variable name. This is
available for FEM variables only. For instance Hess_u, Hess_v, Hess_p, Hess_Test2_v,
Hess_Test_p, Hess_Test_pressure.

• A certain number of predefined scalar functions (sin(t), cos(t), pow(t,u), sqrt(t),
sqr(t), Heaviside(t), . . .). A scalar function can be applied to scalar or vec-
tor/matrix/tensor expressions. It applies componentwise. For functions having two arguments
(pow(t,u), min(t,u) . . .) if two non-scalar arguments are passed, the dimension have to be
the same. For instance “max([1;2],[0;3])” will return “[1;3]”.

• A certain number of operations: +, -, *, /, :, ., .*, ./, @, ', Cross_product(v1,v2).

• A certain number of linear operator: Trace(M), Sym(M), Skew(M), . . .

• A certain number of nonlinear operator: Norm(V), Det(M), Sym(M), Skew(M), . . .

• Some constants: pi, meshdim (the dimension of the current mesh), qdim(u) and qdims(u)
the dimensions of the variable u (the size for fixed size variables and the dimension of the vector
field for FEM variables), Id(n) the identity 𝑛× 𝑛 matrix.

• Parentheses can be used to change the operations order in a standard way. For instance (1+2)*4
or (u+v)*Test_u are valid expressions.

• The access to a component of a vector/matrix/tensor can be done by following a term by a left
parenthesis, the list of components and a right parenthesis. For instance [1,1,2](3) is correct
and will return 2. Note that indices are assumed to begin by 1 (even in C++ and with the python
interface). A colon can replace the value of an index in a Matlab like syntax.

• Explicit vectors: For instance [1;2;3;4] is an explicit vector of size four. Each component can
be an expression.

• Explicit matrices: For instance [1,3;2,4] and [[1,2],[3,4]] denote the same 2x2 matrix.
Each component can be an expression.

• Explicit fourth order tensors: example of explicit 3x2x2x2 fourth order tensor in the
nested format: [[[[1,2,3],[1,2,3]],[[1,2,3],[1,2,3]]],[[[1,2,3],[1,2,
3]],[[1,2,3],[1,2,3]]]].

• X is the current coordinate on the real element, X(i) is its i-th component.

• Normal is the outward unit normal vector to a boundary, when integrating on a domain
boundary, or the unit normal vector to a level-set when integrating on a level-set with a
mesh_im_level_set method. In the latter case, the normal vector is in the direction of the
level-set function gradient.

• Reshape(t, i, j, ...): Reshape a vector/matrix/tensor. Note that all tensors in GetFEM
are stored in the Fortran order.

• A certain number of linear and nonlinear operators (Trace, Norm, Det, Deviator,
Contract, . . .). The nonlinear operators cannot be applied to test functions.

36 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

• Diff(expression, variable): The possibility to explicit differentiate an expression with
respect to a variable (symbolic differentiation).

• Diff(expression, variable, direction): computes the derivative of
expression with respect to variable in the direction direction.

• Grad(expression): When possible, symbolically derive the gradient of the given expression.

• Possiblility of macro definition (in the model, the ga_workspace object or directly in the assembly
string). The macros should be some valid expressions that are expanded inline at the lexical
analysis phase (if they are used several times, the computation is automatically factorized at the
compilation stage).

• Interpolate(variable, transformation): Powerful operation which allows to in-
terpolate the variables, or test functions either on the same mesh on other elements or on another
mesh. transformation is an object stored by the workspace or model object which describes
the map from the current point to the point where to perform the interpolation. This functionality
can be used for instance to prescribe periodic conditions or to compute mortar matrices for two
finite element spaces defined on different meshes or more generally for fictitious domain methods
such as fluid-structure interaction.

• Elementary_transformation(variable, transformation, dest): Allow a
linear transformation defined at the element level (i.e. not possible to define at the gauss point
level). This feature has been added mostly for defining a reduction for plate elements (projection
onto low-level vector element such as rotated RT0). transformation is an object stored by
the workspace or model object which describes the trasformation for a particular element. dest
is an optional argument refering to a model variable or data whose fem will be the target fem of
the transformation. If omitted, the target fem of the transformation is the one of the first variable.

• Possibility of integration on the direct product of two-domains for double integral computation
or coupling of two variables with a Kernel / convolution / exchange integral. This allows terms

like
∫︁
Ω1

∫︁
Ω2

𝑘(𝑥, 𝑦)𝑢(𝑥)𝑣(𝑦)𝑑𝑦𝑑𝑥 with Ω1 and Ω2 two domains, different or not, having their

own meshes, integration methods and with 𝑢 a variable defined on Ω1 and 𝑣 a variable defined on
Ω2. The keyword Secondary_domain(variable) allows to access to the variables on the
second domain of integration.

10.2 Some basic examples

The weak formulation for the Poisson problem on a domain Ω

−div ∇𝑢 = 𝑓, in Ω,

with Dirichlet boundary conditions 𝑢 = 0 on 𝜕Ω is classically∫︁
Ω
∇𝑢 · ∇𝑣𝑑𝑥 =

∫︁
Ω
𝑓𝑣𝑑𝑥,

for all test functions 𝑣 vanishing on 𝜕Ω. The corresponding expression on the assembly string is:

Grad_u.Grad_Test_u - my_f*Test_u

where my_f is the expression of the source term. If now the equation is

−div 𝑎∇𝑢 = 𝑓, in Ω,

for a a scalar coefficient, the corresponding assembly string is:

10.2. Some basic examples 37

User Documentation, Release 5.4.2

a*Grad_u.Grad_Test_u - my_f*Test_u

where a has to be declared as a scalar constant or a scalar field. Not that is is also possible to describe it
explicitly. For instance the problem

−div sin(𝑥1 + 𝑥2)∇𝑢 = 𝑓, in Ω,

where 𝑥1, 𝑥2 are the coordinates on the mesh, can be expressed:

sin(X(1)+X(2))*Grad_u.Grad_Test_u - my_f*Test_u

Another classical equation is linear elasticity:

−div 𝜎(𝑢) = 𝑓, in Ω,

for 𝑢 a vector field and 𝜎(𝑢) = 𝜆div 𝑢+ 𝜇(∇𝑢+ (∇𝑢)𝑇) when isotropic linear elasticity is considered.
The corresponding assembly string to describe the weak formulation can be written:

"(lambda*Trace(Grad_u)*Id(qdim(u)) + mu*(Grad_u+Grad_u')):Grad_Test_u - my_
→˓f.Test_u"

or:

"lambda*Div_u*Div_Test_u + mu*(Grad_u + Grad_u'):Grad_Test_u - my_f.Test_u"

Here again, the coefficients lambda and mu can be given constants, or scalar field or explicit expression
or even expression coming from some other variables in order to couples some problems. For instance,
if the coefficients depends on a temperature field one can write:

"my_f1(theta)*Div_u*Div_Test_u + my_f2(theta)*(Grad_u + Grad_u'):Grad_Test_
→˓u - my_f.Grad_Test_u"

where theta is the temperature which can be the solution to a Poisson equation:

"Grad_theta.Grad_Test_theta - my_f*Grad_Test_theta"

and my_f1 and my_f2 are some given functions. Note that in that case, the problem is nonlinear due
to the coupling, even if the two functions my_f1 and my_f2 are linear.

10.3 Derivation order and symbolic differentiation

The derivation order of the assembly string is automatically detected. This means that if no test functions
are found, the order will be considered to be 0 (potential energy), if first order test functions are found,
the order will be considered to be 1 (weak formulation) and if both first and second order test functions
are found, the order will be considered to be 2 (tangent system).

In order to perform an assembly (see next section), one should specify the order (0, 1 or 2). If an order
1 string is furnished and an order 2 assembly is required, a symbolic differentiation of the expression is
performed. The same if an order 0 string is furnished and if an order 1 or 2 assembly is required. Of
course, the converse is not true. If an order 1 expression is given and an order 0 assembly is expected, no
integration is performed. This should not be generally not possible since an arbitrary weak formulation
do not necessary derive from a potential energy.

38 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

The standard way to use the generic assembly is to furnish order 1 expressions (i.e. a weak formulation).
If a potential energy exists, one may furnish it. However, it will be derived twice to obtain the tangent
system which could result in complicated expressions. For nonlinear problems, it is not allowed to
furnish order 2 expressions directly. The reason is that the weak formulation is necessary to obtain the
residual. So nothing could be done with a tangent term without having the corresponding order 1 term.

IMPORTANT REMARK: Note that for coupled problems, a global potential frequently do not exists.
So that the part of problems directly defined with a potential may be difficult to couple. To illustrate this,
if you defined a potential with some parameters (elasticity coefficients for instance), and the coupling-
consists in a variation of these coefficients with respect to another variable, then the weak formulation do
not consist of course in the derivative of the potential with respect to the coefficients which has generally
no sense. This is the reason why the definition through a potential should be the exception.

10.4 C++ Call of the assembly

Note that the most natural way to use the generic assembly is by the use of the generic assembly bricks
of the model object, see Section Generic assembly bricks. It is however also possible to use the high
level generic assembly on its own.

The generic assembly is driven by the object getfem::ga_workspace defined in getfem/
getfem_generic_assembly.h.

There is two ways to define a getfem::ga_workspace object. It can depend on a model (see The
model description and basic model bricks) and should be declared as:

getfem::ga_workspace workspace(model);

with model a previously define getfem::model object. In that case the variable and constant consid-
ered are the one of the model. The second way it to define an independent getfem::ga_workspace
object by:

getfem::ga_workspace workspace;

In that case, the variable and constant have to be added to the workspace. This can be done thanks to the
following methods:

workspace.add_fem_variable(name, mf, I, V);

workspace.add_fixed_size_variable(name, I, V);

workspace.add_fem_constant(name, mf, V);

workspace.add_fixed_size_constant(name, V);

workspace.add_im_data(name, imd, V);

where name is the variable/constant name (see in the next sections the restriction on possible names),
mf is the getfem::mesh_fem object describing the finite element method, I is an object of class
gmm::sub_interval indicating the interval of the variable on the assembled vector/matrix and V is
a getfem::base_vector being the value of the variable/constant. The last method add a constant
defined on an im_data object imd which allows to store scalar/vector/tensor field informations on the
integration points of an mesh_im object.

10.4. C++ Call of the assembly 39

User Documentation, Release 5.4.2

Once it is declared and once the variables and constant are declared, it is possible to add assembly string
to the workspace with:

workspace.add_expression("my expression", mim, rg = all_convexes());

where "my expression" is the assembly string, mim is a getfem::mesh_im object and rg if an
optional valid region of the mesh corresponding to mim.

As it is explained in the previous section, the order of the string will be automatically detected and a
symbolic differentiation will be performed to obtain the corresponding tangent term.

Once assembly strings are added to the workspace, is is possible to call:

workspace.assembly(order);

where order should be equal to 0 (potential energy), 1 (residual vector) or 2 (tangent term, or stiffness
matrix for linear problems). The result of the assembly is available as follows:

workspace.assembled_potential() // For order = 0

workspace.assembled_vector() // For order = 1

workspace.assembled_matrix() // For order = 2

By default, the assembled potential, vector and matrix is initialized to zero at the beginning of the
assembly. It is however possible (and recommended) to set the assembly vector and matrix to external
ones to perform an incremental assembly. The two methods:

workspace.set_assembled_vector(getfem::base_vector &V);

workspace.set_assembled_matrix(getfem::model_real_sparse_matrix &K);

allows to do so. Be aware to give a vector and a matrix of the right dimension.

Note also that the method:

workspace.clear_expressions();

allows to cancel all furnished expressions and allows to re-use the same workspace for another assembly.

It is also possible to call the generic assembly from the Python/Scilab/Octave/Matlab interface. See
gf_asm command of the interface for more details.

10.5 C++ assembly examples

As a first example, if one needs to perform the assembly of a Poisson problem

−div ∇𝑢 = 𝑓, in Ω,

the stiffness matrix is given

𝐾𝑖,𝑗 =

∫︁
Ω
∇𝜙𝑖 · ∇𝜙𝑗𝑑𝑥,

and will be assembled by the following code:

40 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

getfem::ga_workspace workspace;
getfem::size_type nbdof = mf.nb_dof();
getfem::base_vector U(nbdof);
workspace.add_fem_variable("u", mf, gmm::sub_interval(0, nbdof), U);
workspace.add_expression("Grad_u.Grad_Test_u", mim);
getfem::model_real_sparse_matrix K(nbdof, nbdof);
workspace.set_assembled_matrix(K);
workspace.assembly(2);

where of course, mf is supposed to be an already declared getfem::mesh_fem object and
mim a already declared getfem::mesh_im object on the same mesh. Note that the value of
the variable do not really intervene because of the linearity of the problem. This allows to pass
getfem::base_vector(nbdof) as the value of the variable which will not be used. Note
also that two other possible expressions for exactly the same result for the assembly string are
"Grad_Test2_u.Grad_Test_u" (i.e. an order 2 expression) or "Norm_sqr(Grad_u)/2"
(i.e. a potential). In fact other possible assembly string will give the same result such as "Grad_u.
Grad_u/2" or "[Grad_u(1), Grad_u(2)].[Grad_Test_u(1), Grad_Test_u(2)]"
for two-dimensional problems. However, the recommendation is preferably to give an order 1 expression
(weak formulation) if there is no particular reason to prefer an order 0 or an order 2 expression.

As a second example, let us consider a coupled problem, for instance the mixed problem of incompress-
ible elasticity given by the equations

−div(𝜇(∇𝑢+ (∇𝑢)𝑇 − 𝑝𝐼𝑑) = 𝑓, in Ω,

div 𝑢 = 0.

where u is the vector valued displacement and p the pressure. The assembly of the matrix for the whole
coupled system can be performed as follows:

getfem::ga_workspace workspace;
getfem::size_type nbdofu = mf_u.nb_dof();
getfem::size_type nbdofp = mf_p.nb_dof();
getfem::base_vector U(nbdofu);
getfem::base_vector P(nbdofp);
getfem::base_vector vmu(1); vmu[0] = mu;
workspace.add_fem_variable("u", mf_u, gmm::sub_interval(0, nbdofu), U);
workspace.add_fem_variable("p", mf_p, gmm::sub_interval(nbdofu, nbdofp),
→˓P);
workspace.add_fixed_size_constant("mu", vmu);
workspace.add_expression("2*mu*Sym(Grad_u):Grad_Test_u"

"- p*Trace(Grad_Test_u) - Test_p*Trace(Grad_u)",
→˓mim);
getfem::model_real_sparse_matrix K(nbdofu+nbdofp, nbdofu+nbdofp);
workspace.set_assembled_matrix(K);
workspace.assembly(2);

where, here, mf_u and mf_p are supposed to be some already declared getfem::mesh_fem objects
defined on the same mesh, mim a already declared getfem::mesh_im object and mu is the Lame
coefficient. It is also possible to perform the assembly of the sub-matrix of this system separately.

Let us see now how to perform the assembly of a source term. The weak formulation of a volumic
source term is ∫︁

Ω
𝑓𝑣𝑑𝑥

where 𝑓 is the source term and 𝑣 the test function. The corresponding assembly can be written:

10.5. C++ assembly examples 41

User Documentation, Release 5.4.2

getfem::ga_workspace workspace;
getfem::size_type nbdofu = mf_u.nb_dof();
getfem::base_vector U(nbdofu);
workspace.add_fem_variable("u", mf_u, gmm::sub_interval(0, nbdofu), U);
workspace.add_fem_constant("f", mf_data, F);
workspace.add_expression("f*Test_u", mim);
getfem::base_vector L(nbdofu);
workspace.set_assembled_vector(L);
workspace.assembly(1);

if the source term is describe on a finite element mf_data and the corresponding vector of degrees of
freedom F. Explicit source terms are also possible. For instance:

getfem::ga_workspace workspace;
getfem::size_type nbdofu = mf_u.nb_dof();
getfem::base_vector U(nbdofu);
workspace.add_fem_variable("u", mf_u, gmm::sub_interval(0, nbdofu), U);
workspace.add_expression("sin(X(1)+X(2))*Test_u", mim);
getfem::base_vector L(nbdofu);
workspace.set_assembled_vector(L);
workspace.assembly(1);

is also valid. If the source term is a boundary term (in case of a Neumann condition) the only difference
is that the mesh region corresponding to the boundary have to be given as follows:

workspace.add_expression("sin(X(1)+X(2))*Test_u", mim, region);

where region is the mesh region number.

As another example, let us describe a simple nonlinear elasticity problem. Assume that we consider a
Saint-Venant Kirchhoff constitutive law which means that we consider the following elastic energy on a
body of reference configuration Ω: ∫︁

Ω

𝜆

2
(tr(𝐸))2 + 𝜇tr(𝐸2)𝑑𝑥

where 𝜆, 𝜇 are the Lamé coefficients and 𝐸 is the strain tensor given by 𝐸 = (∇𝑢 + (∇𝑢)𝑇 +
(∇𝑢)𝑇∇𝑢)/2.

This is possible to perform the assembly of the corresponding tangent problem as follows:

getfem::ga_workspace workspace;
getfem::size_type nbdofu = mf_u.nb_dof();
getfem::base_vector vlambda(1); vlambda[0] = lambda;
getfem::base_vector vmu(1); vmu[0] = mu;
workspace.add_fem_variable("u", mf_u, gmm::sub_interval(0, nbdofu), U);
workspace.add_fixed_size_constant("lambda", vlambda);
workspace.add_fixed_size_constant("mu", vmu);
workspace.add_expression("lambda*sqr(Trace(Grad_u+Grad_u'+Grad_u'*Grad_u))"

"+ mu*Trace((Grad_u+Grad_u'+Grad_u'*Grad_u)"
"*(Grad_u+Grad_u'+Grad_u'*Grad_u))", mim);

getfem::base_vector L(nbdofu);
workspace.set_assembled_vector(V);
workspace.assembly(1);
getfem::model_real_sparse_matrix K(nbdofu, nbdofu);
workspace.set_assembled_matrix(K);
workspace.assembly(2);

42 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

and to adapt a Newton-Raphson algorithm to solve that nonlinear problem. Of course the expression is
rather repetitive and it would be preferable to define some intermediate nonlinear operators. However,
note that repeated expressions are automatically detected and computed only once in the assembly.

The last example is the assembly of the stiffness matrix of an order four problem, the Kirchhoff-Love
plate problem:

getfem::ga_workspace workspace;
getfem::size_type nbdofu = mf_u.nb_dof();
getfem::base_vector vD(1); vD[0] = D;
getfem::base_vector vnu(1); vnu[0] = nu;
workspace.add_fem_variable("u", mf_u, gmm::sub_interval(0, nbdofu), U);
workspace.add_fixed_size_constant("D", vD);
workspace.add_fixed_size_constant("nu", vnu);
workspace.add_expression("D*(1-nu)*(Hess_u:Hess_Test_u) -"

"D*nu*Trace(Hess_u)*Trace(Hess_Test_u)", mim);
getfem::model_real_sparse_matrix K(nbdofu, nbdofu);
workspace.set_assembled_matrix(K);
workspace.assembly(2);

with D the flexion modulus and nu the Poisson ratio.

10.6 Script languages call of the assembly

For the use with Python, Scilab, Octave or Matlab interfaces, see the respective documentation, in
particular the gf_asm command and the model object.

10.7 The tensors

Basically, what is manipulated in GWFL are tensors. This can be order 0 tensors in scalar expressions
(for instance in 3+sin(pi/2)), order 1 tensors in vector expressions (such as X.X or Grad_u if u is
a scalar variable), order 2 tensors for matrix expressions and so on. For efficiency reasons, the language
manipulates tensors up to order six. The language could be easily extended to support tensors of order
greater than six but it may lead to inefficient computations. When an expression contains test functions
(as in Trace(Grad_Test_u) for a vector field u), the computation is done for each test functions,
which means that the tensor implicitly have a supplementary component. This means that, implicitly,
the maximal order of manipulated tensors are in fact six (in Grad_Test_u:Grad_Test2_u there
are two components implicitly added for first and second order test functions).

Order four tensors are necessary for instance to express elasticity tensors or in general to obtain the
tangent term for vector valued unknowns.

10.8 The variables

A list of variables should be given to the ga_worspace object (directly or through a model object).
The variables are described on a finite element method or can be a simple vector of unknowns. This
means that it is possible also to couple algebraic equations to pde ones on a model. A variable name
should begin by a letter (case sensitive) or an underscore followed by a letter, a number or an underscore.
Some name are reserved, this is the case of operators names (Det, Norm, Trace, Deviator, . . .) and
thus cannot be used as variable names. The name should not begin by Test_, Test2_, Grad_, Div_

10.6. Script languages call of the assembly 43

User Documentation, Release 5.4.2

or Hess_. The variable name should not correspond to a predefined function (sin, cos, acos . . .)
and to constants (pi, Normal, X, Id . . .).

10.9 The constants or data

A list of constants could also be given to the ga_worspace object. The rule are the same as for the
variables but no test function can be associated to constants and there is no symbolic differentiation with
respect to constants. Scalar constants are often defined to represent the coefficients which intervene in
constitutive laws. Additionally, constants can be some scalar/vector/tensor fields defined on integration
points via a im_data object (for instance for some implementation of the approximation of constitutive
laws such as plasticity).

10.10 Test functions

Each variable is associated with first order and second order test functions. The first order test function
are used in the weak formulation (which derive form the potential equation if it exists) and the second
order test functions are used in the tangent system. For a variable u the associated test functions are
Test_u and Test2_u. The assembly string have to be linear with respect to test functions. As a result
of the presence of the term Test_u on a assembly string, the expression will be evaluated for each
shape function of the finite element corresponding to the variable u. On a given element, if the finite
element have N shape functions ans if u is a scalar field, the value of Test_u will be the value of each
shape function on the current point. So Test_u return if face a vector of N values. But of course, this
is implicit in the language. So one do not have to care about this.

10.11 Gradient

The gradient of a variable or of test functions are identified by Grad_ followed by the vari-
able name or by Test_ followed itself by the variable name. This is available for FEM
variables (or constants) only. For instance Grad_u, Grad_v, Grad_p, Grad_pressure,
Grad_electric_field and Grad_Test_u, Grad_Test_v, Grad_Test_p,
Grad_Test_pressure, Grad_Test_electric_field. The gradient is either a vector
for scalar variables or a matrix for vector field variables. In the latter case, the first index corresponds
to the vector field dimension and the second one to the index of the partial derivative. Div_u and
Div_Test_u are some optimized shortcuts for Trace(Grad_u) and Trace(Grad_Test_u),
respectively.

10.12 Hessian

Similarly, the Hessian of a variable or of test functions are identified by Hess_ followed
by the variable name or by Test_ followed itself by the variable name. This is avail-
able for FEM variables only. For instance Hess_u, Hess_v, Hess_p, Hess_pressure,
Hess_electric_field and Hess_Test_u, Hess_Test_v, Hess_Test_p,
Hess_Test_pressure, Hess_Test_electric_field. The Hessian is either a matrix
for scalar variables or a third order tensor for vector field variables. In the latter case, the first index
corresponds to the vector field dimension and the two remaining to the indices of partial derivatives.

44 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

10.13 Predefined scalar functions

A certain number of predefined scalar functions can be used. The exhaustive list is the following and for
most of them are equivalent to the corresponding C function:

• sqr(t) (the square of t, equivalent to t*t), pow(t, u) (t to the power u), sqrt(t) (square
root of t), exp(t), log(t), log10(t)

• sin(t), cos(t), tan(t), asin(t), acos(t), atan(t), atan2(t, u)

• sinh(t), cosh(t), tanh(t), asinh(t), acosh(t), atanh(t)

• erf(t), erfc(t)

• sinc(t) (the cardinal sine function sin(t)/t)

• Heaviside(t) (0 for 𝑡 < 0, 1 for 𝑡 ≥ 0)

• sign(t)

• abs(t)

• pos_part(t) (𝑡𝐻(𝑡))

• reg_pos_part(t, eps) ((𝑡− 𝑒𝑝𝑠/2− 𝑡2/(2𝑒𝑝𝑠))𝐻(𝑡− 𝑒𝑝𝑠) + 𝑡2𝐻(𝑡)/(2𝑒𝑝𝑠))

• neg_part(t) (−𝑡𝐻(−𝑡)), max(t, u), min(t, u)

A scalar function can be applied to a scalar expression, but also to a tensor one. If is is applied to a
tensor expression, is is applied componentwise and the result is a tensor with the same dimensions. For
functions having two arguments (pow(t,u), min(t,u) . . .) if two non-scalar arguments are passed, the
dimension have to be the same. For instance “max([1;2],[0;3])” will return “[0;3]”.

10.14 User defined scalar functions

It is possible to add a scalar function to the already predefined ones. Note that the generic assembly
consider only scalar function with one or two parameters. In order to add a scalar function to the generic
assembly, one has to call:

ga_define_function(name, nb_args, expr, der1="", der2="");

ga_define_function(name, getfem::pscalar_func_onearg f1, der1="");

ga_define_function(name, getfem::pscalar_func_twoargs f2, der1="", der2="
→˓");

where name is the name of the function to be defined, nb_args is equal to 1 or 2. In the first call,
expr is a string describing the function in GWFL and using t as the first variable and u as the second
one (if nb_args is equal to 2). For instance, sin(2*t)+sqr(t) is a valid expression. Note that it
is not possible to refer to constant or data defined in a ga_workspace object. der1 and der2 are
the expression of the derivatives with respect to t and u. They are optional. If they are not furnished, a
symbolic differentiation is used if the derivative is needed. If der1 and der2 are defined to be only a
function name, it will be understand that the derivative is the corresponding function. In the second call,
f1 should be a C pointer on a scalar C function having one scalar parameter and in the third call, f2
should be a C pointer on a scalar C function having two scalar parameters.

Additionally,:

10.13. Predefined scalar functions 45

User Documentation, Release 5.4.2

bool ga_function_exists(name)

return true is a function name is already defined and:

ga_undefine_function(name)

cancel the definition of an already define function (it has no action if the function does not exist) which
allow to redefine a function.

10.15 Derivatives of defined scalar functions

It is possible to refer directly to the derivative of defined functions by adding the prefix Derivative_
to the function name. For instance, Derivative_sin(t) will be equivalent to cos(t). For two
arguments functions like pow(t,u) one can refer to the derivative with respect to the second argument
with the prefix Derivative_2_ before the function name.

10.16 Binary operations

A certain number of binary operations between tensors are available:

• + and - are the standard addition and subtraction of scalar, vector, matrix or tensors.

• * stands for the scalar, matrix-vector, matrix-matrix or (fourth order tensor)-matrix multiplication.

• / stands for the division by a scalar.

• . stands for the scalar product of vectors, or more generally to the contraction of a tensor with
respect to its last index with a vector or with the first index of another tensor. Note that * and .
are equivalent for matrix-vector or matrix-matrix multiplication.

• : stands for the Frobenius product of matrices or more generally to the contraction of a tensor
with respect to the two last indices with a matrix or the two first indices of a higher order tensor.
Note that * and : are equivalent for (fourth order tensor)-matrix multiplication.

• .* stands for the multiplication of two vectors/matrix/tensor componentwise.

• ./ stands for the division of two vectors/matrix/tensor componentwise.

• @ stands for the tensor product.

• Cross_product(V, W) stands for the cross product (vector product) of V and W. Defined
only for three-dimensional vectors.

• Contract(A, i, B, j) stands for the contraction of tensors A and B with respect to the ith
index of A and jth index of B. The first index is numbered 1. For instance Contract(V,1,W,
1) is equivalent to V.W for two vectors V and W.

• Contract(A, i, j, B, k, l) stands for the double contraction of tensors A and B with
respect to indices i,j of A and indices k,l of B. The first index is numbered 1. For instance
Contract(A,1,2,B,1,2) is equivalent to A:B for two matrices A and B.

46 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

10.17 Unary operators

• - the unary minus operator: change the sign of an expression.

• ' stands for the transpose of a matrix or line view of a vector. It a tensor A is of order greater than
two,‘‘A’‘‘ denotes the inversion of the two first indices.

• Contract(A, i, j) stands for the contraction of tensor A with respect to its ith and jth
indices. The first index is numbered 1. For instance, Contract(A, 1, 2) is equivalent to
Trace(A) for a matrix A.

• Swap_indices(A, i, j) exchange indices number i and j. The first index is numbered 1.
For instance Swap_indices(A, 1, 2) is equivalent to A' for a matrix A.

• Index_move_last(A, i) move the index number i in order to be the last one. For instance,
if A is a fourth order tensor 𝐴𝑖1𝑖2𝑖3𝑖4 , then the result of Index_move_last(A, 2) will be the
tensor 𝐵𝑖1𝑖3𝑖4𝑖2 = 𝐴𝑖1𝑖2𝑖3𝑖4 . For a matrix, Index_move_last(A, 1) is equivalent to A'.

10.18 Parentheses

Parentheses can be used in a standard way to change the operation order. If no parentheses are indicated,
the usually priority order are used. The operations + and - have the lower priority (with no distinction),
then *, /, :, ., .*, ./, @ with no distinction and the higher priority is reserved for the unary operators
- and '.

10.19 Explicit vectors

GWFL allows to define explicit vectors (i.e. order 1 tensors) with the notation [a,b,c,d,e], i.e. an
arbitrary number of components separated by a comma (note the separation with a semicolon [a;b;c;
d;e] is also permitted), the whole vector beginning with a right bracket and ended by a left bracket. The
components can be some numeric constants, some valid expressions and may also contain test functions.
In the latter case, the vector has to be homogeneous with respect to the test functions. This means that a
construction of the type [Test_u; Test_v] is not allowed. A valid example, with u as a scalar field
variable is [5*Grad_Test_u(2), 2*Grad_Test_u(1)]. Note also that using the quite opertor
(transpose), an expression [a,b,c,d,e]' stands for ‘row vector‘, i.e. a 1x5 matrix.

10.20 Explicit matrices

Similarly to explicit vectors, it is possible to define explicit matrices (i.e. order 2 tensors) with the nota-
tion [[a,b],[c,d]], i.e. an arbitrary number of columns vectors separated by a comma (the syntax
[a,c;b,d] of lines separated by a semicolon is also permitted). For instance [[11,21],[12,
22],[13,23]] and [11,12,13;21,22,23] both represent the same 2x3 matrix. The compo-
nents can be some numeric constants, some valid expressions and may also contain test functions.

10.21 Explicit tensors

Explicit tensors of any order are permitted with the nested format. A tensor of order n is written
as a succession of tensor of order n-1 of equal dimensions and separated by a comma. For in-

10.17. Unary operators 47

User Documentation, Release 5.4.2

stance [[[[1,2,3],[1,2,3]],[[1,2,3],[1,2,3]]],[[[1,2,3],[1,2,3]],[[1,2,
3],[1,2,3]]]] is a fourth order tensor. Another possibility is to use the syntax Reshape([1,2,
3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3], 3, 2, 2, 2) where the com-
ponents have to be given in Fortran order.

10.22 Access to tensor components

The access to a component of a vector/matrix/tensor can be done by following a term by a left parenthe-
sis, the list of components and a right parenthesis. For instance [1,1,2](3) is correct and is returning
2 as expected. Note that indices are assumed to begin by 1 (even in C++ and with the python interface).
The expressions [1,1;2,3](2,2) and Grad_u(2,2) are also correct provided that u is a vector
valued declared variable. Note that the components can be the result of a constant computation. For
instance [1,1;2,3](1+1,a) is correct provided that a is a declared constant but not if it is declared
as a variable. A colon can replace the value of an index in a Matlab like syntax for instance to access to
a line or a column of a matrix. [1,1;2,3](1,:) denotes the first line of the matrix [1,1;2,3]. It
can also be used for a fourth order tensor.

10.23 Constant expressions

• Floating points with standards notations (for instance 3, 1.456, 1E-6)

• pi: the constant Pi.

• meshdim: the dimension of the current mesh (i.e. size of geometrical nodes)

• timestep: the main time step of the model on which this assembly string is evaluated (defined
by model.set_time_step(dt)). Do not work on pure workspaces.

• Id(n): the identity matrix of size 𝑛 × 𝑛. n should be an integer expression. For instance
Id(meshdim) is allowed.

• qdim(u): the total dimension of the variable u (i.e. the size for fixed size variables and the total
dimension of the vector/tensor field for FEM variables)

• qdims(u): the dimensions of the variable u (i.e. the size for fixed size variables and the vector
of dimensions of the vector/tensor field for FEM variables)

10.24 Special expressions linked to the current position

• X is the current coordinate on the real element (i.e. the position on the mesh of the current
Gauss point on which the expression is evaluated), X(i) is its i-th component. For instance
sin(X(1)+X(2)) is a valid expression on a mesh of dimension greater or equal to two.

• Normal the outward unit normal vector to a boundary when integration on a boundary is per-
formed.

• element_size gives an estimate of the current element diameter (using get-
fem::convex_radius_estimate).

• element_K gives the gradient of the geometric transformation (see dp-transgeo) from the refer-
ence (parent) element. Could be used only if the mesh do not contain elements of mixed dimen-
sions.

48 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

• element_B gives the transpose of the pseudo-inverse of the gradient of the geometric transfor-
mation (see dp-transgeo) from the reference (parent) element. Could be used only if the mesh do
not contain elements of mixed dimensions.

10.25 Print command

For debugging purpose, the command Print(a) is printing the tensor a and pass it unchanged. For
instance Grad_u.Print(Grad_Test_u) will have the same effect as Grad_u.Grad_Test_u
but printing the tensor Grad_Test_u for each Gauss point of each element. Note that constant terms
are printed only once at the beginning of the assembly. Note also that the expression could be derived
so that the derivative of the term may be printed instead of the term itself.

10.26 Reshape a tensor

The command Reshape(t, i, j, ...) reshapes the tensor t (which could be an expres-
sion). The only constraint is that the number of components should be compatible. For instance
Reshape(Grad_u, 1, meshdim) is equivalent to Grad_u' for u a scalar variable. Note that
the order of the components remain unchanged and are classically stored in Fortran order for compati-
bility with Blas/Lapack.

10.27 Trace, Deviator, Sym and Skew operators

Trace, Deviator, Sym and Skew operators are linear operators acting on square matrices:

• Trace(m) gives the trace (sum of diagonal components) of a square matrix m.

• Deviator(m) gives the deviator of a square matrix m. It is equivalent to m -
Trace(m)*Id(m_dim)/m_dim, where m_dim is the dimension of m.

• Sym(m) gives the symmetric part of a square matrix m, i.e. (m + m')/2.

• Skew(m) gives the skew-symmetric part of a square matrix m, i.e. (m - m')/2.

The four operators can be applied on test functions. Which means that for instance both
Trace(Grad_u) and Trace(Grad_Test_u) are valid when Grad_u is a square matrix (i.e. u a
vector field of the same dimension as the mesh).

10.28 Nonlinear operators

GWFL provides some predefined nonlinear operator. Each nonlinear operator is available together with
its first and second derivatives. Nonlinear operator can be applied to an expression as long as this
expression do not contain some test functions.

• Norm(v) for v a vector or a matrix gives the euclidean norm of a vector or a Frobenius norm of
a matrix.

• Norm_sqr(v) for v a vector or a matrix gives the square of the euclidean norm of a vector or
of the Frobenius norm of a matrix. For a vector this is equivalent to v.v and for a matrix to m:m.

10.25. Print command 49

User Documentation, Release 5.4.2

• Normalized(v) for v a vector or a matrix gives v divided by its euclidean (for vectors) or
Frobenius (for matrices) norm. In order to avoid problems when v is close to 0, it is implemented
as Normalized_reg(v, 1E-25). Use with care. Think that the derivative at the origin of
Normalized(v)*Norm(v) is wrong (it vanishes) and very different from the derivative of v.

• Normalized_reg(v, eps) for v a vector or a matrix gives a regularized version of
Normalized(v) : v/sqrt(|v|*|v|+eps*eps).

• Ball_projection(v, r) for v a vector or a matrix and r a scalar, gives the projection of v
on the ball of radius r and center the origin.

• Det(m) gives the determinant of a square matrix m.

• Inv(m) gives the inverse of a square matrix m. The second derivative is not available since it is
an order 6 tensor. This means that Inv(m) cannot be used in the description of a potential energy.

• Expm(m) gives the exponential of a square matrix m.

• Logm(m) gives the logarithm of a square matrix m.

• Matrix_I2(m) gives the second invariants of a square matrix m which is defined by
(sqr(Trace(m)) - Trace(m*m))/2.

• Matrix_J1(m) gives the modified first invariant of a square matrix defined by
Trace(m)pow(Det(m),-1/3).

• Matrix_J2(m) gives the modified first invariant of a square matrix defined by
Matrix_I2(m)*pow(Det(m),-2/3).

10.29 Macro definition

GWFL allows the use of macros that are either predefined in the model or ga_workspace object or
directly defined at the begining of an assembly string. The definition into a ga_workspace or model
object is done as follows:

workspace.add_macro(name, expr)

or:

model.add_macro(name, expr)

The definition of a macro into an assembly string is inserted before any regular expression, separated by
a semicolon with the following syntax:

"Def name:=expr; regular_expression"

where name is he macro name which then can be used in GWFL and contains also the macro parameters,
expr is a valid expression of GWFL (which may itself contain some macro definitions). For instance,
a valid macro with no parameter is:

model.add_macro("my_transformation", "[cos(alpha)*X(1);sin(alpha)*X(2)]");

where alpha should be a valid declared variable or data. A valid macro with two parameters is for
instance:

50 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

model.add_macro("ps(a,b)", "a.b");

The following assembly string is then valid (if u is a valid variable):

"Def ps(a,b):=a.b; ps(Grad_u, Grad_Test_u)"

Parameter are allowed to be post-fixed to Grad_, Hess_, Test_ and Test2_ prefixes, so that the
following assembly string is valid:

"Def psgrad(a,b):=Grad_a.Grad_b; psgrad(u, Test_u)"

or with an imbrication of two macros:

"Def ps(a,b):=a.b; Def psgrad(a,b):=ps(Grad_a,Grad_b); psgrad(u, Test_u)"

A macro can be deleted from a ga_workspace or model object as follows:

workspace.del_macro(name)
model.del_macro(name)

Note that a macro defined at the begining of an assembly string is only defined in the assembly string
and cannot be used later without being added in a model or ga_workspace object.

The macros are expanded inline at the lexical analysis phase. Note that a the compilation phase, the
repeated expressions are automatically factorized and computed only once.

10.30 Explicit Differentiation

The workspace object automatically differentiate terms that are of lower deriation order. However,
it is also allowed to explicitly differentiate an expression with respect to a variable. One interest is
that the automatic differentiation performs a derivative with respect to all the declared variables of
model/workspace but this is not necessarily the expected behavior when using a potential energy, for
instance. The syntax is:

Diff(expression, variable)

For instance, the following expression:

Diff(u.u, u)

will result in:

2*(u.Test_u)

So that:

Grad_u:Grad_test_u + Diff(u.u, u)

is a valid expression. A third argument can be added to the Diff command to specify the direction:

Diff(expression, variable, direction)

10.30. Explicit Differentiation 51

User Documentation, Release 5.4.2

in that case, it replaces the Test_variable by the expression direction which has to be of the
same dimension as variable. It computes the derivative of expressionwith respect to variable
in the direction direction. For instance:

Diff(u.u, u, v)

will result in:

2*(u.v)

if v is any valid expression of the same dimension than u.

10.31 Explicit Gradient

It is possible to ask for symbolic computation of the gradient of an expression with:

Grad(expression)

It will be computed as far as it is possible. The limitations come from the fact that GetFEM is limited to
second order derivative of shape function and nonlinear operators are supposed to provide only first and
second order derivatives.

Of course:

Grad(u)

is equivalent to:

Grad_u

for a varible u.

10.32 Interpolate transformations

The Interpolate operation allows to compute integrals between quantities which are either defined
on different part of a mesh or even on different meshes. It is a powerful operation which allows to
compute mortar matrices or take into account periodic conditions. However, one have to remember that
it is based on interpolation which may have a non-negligible computational cost.

In order to use this functionality, the user have first to declare to the workspace or to the model object an
interpolate transformation which described the map between the current integration point and the point
lying on the same mesh or on another mesh.

Different kind of transformations can be described. Several kinds of transformations has been imple-
mented. The first one, described hereafter is a transformation described by an expression. A second one
corresponds to the raytracing contact detection (see Raytracing interpolate transformation). Some other
transformations (neighbor element and element extrapolation) are describe in the next sections.

The transformation defined by an expression can be added to the workspace or the model thanks to the
command:

52 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

add_interpolate_transformation_from_expression
(workspace, transname, source_mesh, target_mesh, expr);

or:

add_interpolate_transformation_from_expression
(model, transname, source_mesh, target_mesh, expr);

where workspace is a workspace object, model a model object, transname is the name given
to the transformation, source_mesh the mesh on which the integration occurs, target_mesh the
mesh on which the interpolation is performed and expr is a regular expression of GWFL which may
contains reference to the variables of the workspace/model.

For instance, an expression:

add_interpolate_transformation_from_expression
(model, "my_transformation", my_mesh, my_mesh, "X-[1;0]");

will allow to integrate some expressions at the current position with a shift of -1 with respect to the first
coordinate. This simple kind of transformation can be used to prescribe a periodic condition.

Of course, one may used more complex expressions such as:

add_interpolate_transformation_from_expression
(model, "my_transformation", my_mesh, my_second_mesh, "[X[1]cos(X[2]);

→˓X[1]sin(X[2])]");

add_interpolate_transformation_from_expression
(model, "my_transformation", my_mesh, my_mesh, "X+u");

where u is a vector variable of the workspace/model.

Once a transformation is defined in the workspace/model, one can interpolate a variable or test functions,
the position or the unit normal vector to a boundary thanks to one of these expressions:

Interpolate(Normal, transname)
Interpolate(X, transname)
Interpolate(element_K, transname)
Interpolate(element_B, transname)
Interpolate(u, transname)
Interpolate(Grad_u, transname)
Interpolate(Div_u, transname)
Interpolate(Hess_u, transname)
Interpolate(Test_u, transname)
Interpolate(Grad_Test_u, transname)
Interpolate(Div_Test_u, transname)
Interpolate(Hess_Test_u, transname)

where u is the name of the variable to be interpolated.

For instance, the assembly expression to prescribe the equality of a variable u with its interpolation (for
instance for prescribing a periodic boundary condition) thanks to a multiplier lambda could be written:

(Interpolate(u,my_transformation)-u)*lambda

(see demo_periodic_laplacian.m in interface/tests/matlab-octave directory).

10.32. Interpolate transformations 53

User Documentation, Release 5.4.2

In some situations, the interpolation of a point may fail if the transformed point is outside the target
mesh. Both in order to treat this case and to allow the transformation to differentiate some other cases
(see Raytracing interpolate transformation for the differentiation between rigid bodies and deformable
ones in the Raytracing_interpolate_transformation) the transformation returns an integer identifier to the
weak form language. A value 0 of this identifier means that no corresponding location on the target
mesh has been found. A value of 1 means that a corresponding point has been found. This identifier can
be used thanks to the following special command of GWFL:

Interpolate_filter(transname, expr, i)

where transname is the name of the transformation, expr is the expression to be evaluated and i
value of the returned integer identifier for which the expression have to be computed. Note that i can
be ommited, in that case, the expression is evaluated for a nonzero identifier (i.e. when a corresponding
point has been found). For instance, the previous assembly expression to prescribe the equality of a
variable u with its interpolation could be writtne:

Interpolate_filter(transmane, Interpolate(u,my_transformation)-u)*lambda)
+ Interpolate_filter(transmane, lambda*lambda, 0)

In that case, the equality will only be prescribed in the part of the domain where the transformation
succeed and in the other part, the mulitplier is enforced to vanish.

CAUTION: You have to think that when some variables are used in the transformation, the computation
of the tangent system takes into account these dependence. However, the second derivative of a trans-
formation with respect to a variable used has not been implemented. Thus, such a transformation is not
allowed in the definition of a potential since it cannot be derived twice.

10.33 Element extrapolation transformation

A specific transformation (see previous section) is defined in order to allows the evaluation of certain
quantities by extrapolation with respect to another element (in general a neighbor element). This is
not strictly speaking a transformation since the point location remain unchanged, but the evaluation
is made on another element extrapolating the shape functions outside it. This transformation is used
for stabilization term in fictitious domain applications (with cut elements) where it is more robust to
extrapolate some quantities on a neighbor element having a sufficiently large intersection with the real
domain than evaluating them on the current element if it has a small intersection with the real domain.
The functions allowing to add such a transformation to a model or a workspace are:

add_element_extrapolation_transformation
(model, transname, my_mesh, std::map<size_type, size_type> &elt_corr);

add_element_extrapolation_transformation
(workspace, transname, my_mesh, std::map<size_type, size_type> &elt_corr);

The map elt_corr should contain the correspondences between the elements where the transformation is
to be applied and the respective elements where the extrapolation has to be made. On the element not
listed in the map, no transformation is applied and the evaluation is performed normally on the current
element.

The following functions allow to change the element correspondence of a previously added element
extrapolation transformation:

54 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

set_element_extrapolation_correspondence
(model, transname, std::map<size_type, size_type> &elt_corr);

set_element_extrapolation_correspondence
(workspace, transname, std::map<size_type, size_type> &elt_corr);

10.34 Evaluating discontinuities across inter-element edges/faces

A specific interpolate transformation (see previous sections), called neighbor_element is defined
by default in all models. This transformation can only be used when a computation is made on an
internal edge/face of a mesh, i.e. an element face shared at least by two elements. It aims to compute
discontinuity jumps of a variable across inter-element faces. It is particularly suitable to implement
Discontinuous Galerkin and interior penalty methods, Ghost penalty terms or a posteriori estimators.
The expressions:

Interpolate(Normal, neighbor_element)
Interpolate(X, neighbor_element)
Interpolate(u, neighbor_element)
Interpolate(Grad_u, neighbor_element)
Interpolate(Div_u, neighbor_element)
Interpolate(Hess_u, neighbor_element)
Interpolate(Test_u, neighbor_element)
Interpolate(Grad_Test_u, neighbor_element)
Interpolate(Div_Test_u, neighbor_element)
Interpolate(Hess_Test_u, neighbor_element)

are available (as with any other interpolate transformation) and compute a field on the current point
but on the neighbor element. Of course, Interpolate(X, neighbor_element) as no spe-
cific interest since it returns the same result as X. Similarly, in most cases, Interpolate(Normal,
neighbor_element) will return the opposite of Normal except for instance for 2D shell element
in a 3D mesh where it has an interest.

The jump on a variable u can be computed with:

u-Interpolate(u, neighbor_element)

and a penalisation term of the jump can be written:

(u-Interpolate(u, neighbor_element))*(Test_u-Interpolate(Test_u, neighbor_
→˓element))

Note that the region representing the set of all internal faces of a mesh can be obtained thanks to the
function:

mr_internal_face = inner_faces_of_mesh(my_mesh, mr)

where mr is an optional mesh region. If mr is specified only the face internal with respect to this region
are returned. An important aspect is that each face is represented only once and is arbitrarily chosen
between the two neighbor elements.

See for instance interface/tests/python/demo_laplacian_DG.py or interface/
tests/matlab-octave/demo_laplacian_DG.m for an example of use.

10.34. Evaluating discontinuities across inter-element edges/faces 55

User Documentation, Release 5.4.2

Compared to other interpolate transformations, this transformation is more optimized and benefits from
finite element and geometric transformation pre-computations.

10.35 Double domain integrals or terms (convolution - Kernel - Ex-
change integrals)

In some very special cases, it can be interesting to compute an integral on the direct product of two
domains, i.e. a double integral such as for instance∫︁

Ω1

∫︁
Ω2

𝑘(𝑥, 𝑦)𝑢(𝑥)𝑣(𝑦)𝑑𝑦𝑑𝑥,

where 𝑘(𝑥, 𝑦) is a given kernel, 𝑢 a quantity defined on Ω1 and 𝑣 a quantity defined on Ω2, eventually
with Ω1 and Ω2 the same domain. This can be interesting either to compute such an integral or to define
an interaction term between two variables defined on two different domains.

CAUTION: Of course, this kind of term have to be used with great care, since it naturally leads to fully
populated stiffness or tangent matrices.

GWFL furnishes a mechanism to compute such a term. First, the secondary domain has to be declared
in the workspace/model with its integration methods. The addition of a standard secondary domain can
be done with one of the two following functions:

add_standard_secondary_domain(model, domain_name, mim, region);

add_standard_secondary_domain(workspace, domain_name, mim, region);

where model or workspace is the model or workspace where the secondary domain has to be de-
clared, domain_name is a string for the identification of this domain together with the mesh region
and integration method, mim the integration method and region a mesh region. Note that with these
standard secondary domains, the integration is done on the whole region for each element of the primary
domain. It can be interesting to implement specific secondary domains restricting the integration to the
necessary elements with respect to the element of the primary domain. A structure is dedicated to this
in GetFEM.

Once a secondary domain has been declared, it can be specified that a GWFL expression
has to be assembled on the direct product of a current domain and a secondary domain,
adding the name of the secondary domain to the add_expression method of the workspace
object or using add_linear_twodomain_term, add_nonlinear_twodomain_term or
add_twodomain_source_term functions:

workspace.add_expression(expr, mim, region, derivative_order, secondary_
→˓domain)
add_twodomain_source_term(model, mim, expr, region, secondary_domain)
add_linear_twodomain_term(model, mim, expr, region, secondary_domain)
add_nonlinear_twodomain_term(model, mim, expr, region, secondary_domain)

For the utilisation with the Python/Scilab/Octave/Matlab interface, see the documentation on gf_asm
command and the model object.

Inside an expression of GWFL, one can refer to the unit normal vector to a boundary, to the current
position or to the value of a variable thanks to the expressions:

56 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

Secondary_domain(Normal)
Secondary_domain(X)
Secondary_domain(u)
Secondary_domain(Grad_u)
Secondary_domain(Div_u)
Secondary_domain(Hess_u)
Secondary_domain(Test_u)
Secondary_domain(Grad_Test_u)
Secondary_domain(Div_Test_u)
Secondary_domain(Hess_Test_u)

For instance, a term like ∫︁
Ω1

∫︁
Ω1

𝑒−‖𝑥−𝑦‖𝑢(𝑥)𝑢(𝑦)𝑑𝑦𝑑𝑥,

would correspond to the following weak form language expression:

exp(Norm(X-Secondary_domain(X)))*u*Secondary_domain(u)

10.36 Elementary transformations

An elementary transformation is a linear transformation of the shape functions given by a matrix
which may depend on the element which is applied to the local degrees of freedom at the ele-
ment level. an example of definition of elementary transformation can be found in the file src/
getfem_linearized_plates.cc. It aims for instance to define a local projection of a finite
element on a lower level element to perform a reduction such as the one used in MITC elements.

Once a transformation is defined, it can be added to the model/workspace with the method:

model.add_elementary_transformation(transname, pelementary_transformation)

where pelementary_transformation is a pointer to an object deriving from
virtual_elementary_transformation. Once it is added to the model/workspace, it is
possible to use the following expressions in GWFL:

Elementary_transformation(u, transname[, dest])
Elementary_transformation(Grad_u, transname[, dest])
Elementary_transformation(Div_u, transname[, dest])
Elementary_transformation(Hess_u, transname[, dest])
Elementary_transformation(Test_u, transname[, dest])
Elementary_transformation(Grad_Test_u, transname[, dest])
Elementary_transformation(Div_Test_u, transname[, dest])
Elementary_transformation(Hess_Test_u, transname[, dest])

where u is one of the FEM variables of the model/workspace, and dest is an optional parameter
which should be a variable or data name of the model and will correspond to the target fem of the
transformation. If omitted, by default, the transformation is from the fem of the first variable to itself.

A typical transformation is the the one for the projection on rotated RT0 element for two-dimensional
elements which is an ingredient of the MITC plate element. It can be added thanks to the function
(defined in src/getfem/getfem_linearized_plates.h):

10.36. Elementary transformations 57

User Documentation, Release 5.4.2

add_2D_rotated_RT0_projection(model, transname)

Some other transformations are available for the use into Hybrid High-Order methods (HHO methods,
see Tools for HHO (Hybrid High-Order) methods for more information). These transformations corre-
spond to the reconstruction of the gradient of a variable or the variable itself, the HHO methods having
separated discretizations on the interior of the element and on its faces. The different transformations
can be added with the functions (defined in src/getfem/getfem_HHO.h):

add_HHO_reconstructed_gradient(model, transname);
add_HHO_reconstructed_symmetrized_gradient(model, transname);

void add_HHO_reconstructed_value(model, transname);
void add_HHO_reconstructed_symmetrized_value(model, transname);

void add_HHO_stabilization(model, transname);
void add_HHO_symmetrized_stabilization(model, transname);

10.37 Xfem discontinuity evaluation (with mesh_fem_level_set)

When using a fem cut by a level-set (using fem_level_set or mesh_fem_level_set objects), it is often
interesting to integrate the discontinuity jump of a variable, or the jump in gradient or the average value.
For this purpose, GWFL furnishes the following expressions for u a FEM variable:

Xfem_plus(u)
Xfem_plus(Grad_u)
Xfem_plus(Div_u)
Xfem_plus(Hess_u)
Xfem_plus(Test_u)
Xfem_plus(Test_Grad_u)
Xfem_plus(Test_Div_u)
Xfem_plus(Test_Hess_u)

Xfem_minus(u)
Xfem_minus(Grad_u)
Xfem_minus(Div_u)
Xfem_minus(Hess_u)
Xfem_minus(Test_u)
Xfem_minus(Test_Grad_u)
Xfem_minus(Test_Div_u)
Xfem_minus(Test_Hess_u)

which are only available when the evaluation (integration) is made on the curve/surface separat-
ing two zones of continuity, i.e. on the zero level-set of a considered level-set function (using a
mesh_im_level_set object). For instance, a jump in the variable u will be given by:

Xfem_plus(u)-Xfem_minus(u)

and the average by:

(Xfem_plus(u)+Xfem_minus(u))/2

The value Xfem_plus(u) is the value of u on the side where the corresponding level-set function is
positive and Xfem_minus(u) the value of u on the side where the level-set function is negative.

58 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

User Documentation, Release 5.4.2

Additionally, note that, when integrating on a level-set with a mesh_im_level_set object, Normal
stands for the normal unit vector to the level-set in the direction of the gradient of the level-set function.

10.38 Storage of sub-expressions in a getfem::im_data object dur-
ing assembly

It is possible to store in a vector depending on a getfem::im_data object a part of an assembly compu-
tation, for instance in order to use this computation in another assembly. This is an alternative to the
interpolation functions which allows not to compute twice the same expression.

The method to add such an assignment in the assembly is the following for a model or a ga_workspace:

model.add_assembly_assignments(dataname, expr, region = size_type(-1),
order = 1, before = false);

workspace.add_assignment_expression(dataname, expr,
region = mesh_region::all_convexes(), order = 1, before = false)

It adds expression expr to be evaluated at assembly time and being assigned to the data dataname which
has to be of im_data type. order represents the order of assembly where this assignement has to be done
(potential(0), weak form(1) or tangent system(2) or at each order(-1)). The default value is 1. If before
= 1, the the assignement is performed before the computation of the other assembly terms, such that the
data can be used in the remaining of the assembly as an intermediary result (be careful that it is still
considered as a data, no derivation of the expression is performed for the tangent system). If before = 0
(default), the assignement is done after the assembly terms.

Additionally, In a model, the method:

model.clear_assembly_assignments()

allows to cancel all the assembly assignments previously added.

10.38. Storage of sub-expressions in a getfem::im_data object during assembly 59

User Documentation, Release 5.4.2

60 Chapter 10. Compute arbitrary terms - high-level generic assembly procedures -
Generic Weak-Form Language (GWFL)

CHAPTER 11

Compute arbitrary terms - low-level generic assembly procedures
(deprecated)

This section present the first version of generic assembly procedure which has been implemented in
GetFEM and is now considered as deprecated. It allows to make the assembly of arbitrary matrices in the
linear case. In the nonlinear case, some special “non_linear_term” object have to be implemented, which
could be a bit tricky and obliges to use very low-level internal tools of GetFEM. The generic weak form
language (GWFL) has been developed to circumvent these difficulties (see Compute arbitrary terms -
high-level generic assembly procedures - Generic Weak-Form Language (GWFL)).

As it can be seen in the file getfem/getfem_assembling.h, all the previous assembly procedures
use a getfem::generic_assembly object and provide it an adequate description of what must be
done. For example, the assembly of a volumic source term for a scalar FEM is done with the following
excerpt of code:

getfem::generic_assembly assem;
assem.push_im(mim);
assem.push_mf(mf);
assem.push_mf(mfdata);
assem.push_data(F);
assem.push_vec(B);
assem.set("Z=data(#2);"

"V(#1)+=comp(Base(#1).Base(#2))(:,j).Z(j);");
assem.assembly();

The first instructions declare the object, and set the data that it will use: a mesh_im object which holds
the integration methods, two mesh_fem objects, the input data F, and the destination vector B.

The input data is the vector 𝐹 , defined on mfdata. One wants to evaluate
∑︀

𝑗 𝑓𝑗(
∫︀
Ω 𝜑

𝑖𝜓𝑗). The
instruction must be seen as something that will be executed for each convex cv of the mesh. The terms
#1 and #2 refer to the first mesh_fem and the second one (i.e. mf and mfdata). The instruction
Z=data(#2); means that for each convex, the “tensor” Z will receive the values of the first data
argument provided with push_data, at indexes corresponding to the degrees of freedom attached to
the convex of the second (#2) mesh_fem (here, Z = F[mfdata.ind_dof_of_element(cv)]).

The part V(#1)+=... means that the result of the next expression will be accumulated into the output

61

User Documentation, Release 5.4.2

vector (provided with push_vec). Here again, #1 means that we will write the result at indexes
corresponding to the degrees of freedom of the current convex with respect to the first (#1) mesh_fem.

The right hand side comp(Base(#1).Base(#2))(:,j).Z(j) contains two operations. The first
one is a computation of a tensor on the convex: comp(Base(#1).Base(#2)) is evaluated as a 2-
dimensions tensor,

∫︀
𝜑𝑖𝜓𝑗 , for all degrees of freedom 𝑖 of mf and 𝑗 of mfdata attached to the current

convex. The next part is a reduction operation, C(:,j).Z(j): each named index (here 𝑗) is summed,
i.e. the result is

∑︀
𝑗 𝑐𝑖,𝑗𝑧𝑗 .

The integration method used inside comp(Base(#1).Base(#2)) is taken from mim. If you need
to use integration methods from another mesh_im object, you can specify it as the first argument of
comp, for example comp(\%2, Base(#1).Grad(#2)) will use the second mesh_im object (New
in getfem++-2.0).

An other example is the assembly of the stiffness matrix for a vector Laplacian:

getfem::generic_assembly assem;
assem.push_im(mim);
assem.push_mf(mf);
assem.push_mf(mfdata);
assem.push_data(A);
assem.push_mat(SM);
assem.set("a=data$1(#2);"

"M$1(#1,#1)+=sym(comp(vGrad(#1).vGrad(#1).Base(#2))(:,j,k,:,j,k,
→˓p).a(p))");
assem.assembly();

Now the output is written in a sparse matrix, inserted with assem.push_mat(SM). The $1 in
M$1(#1,#1) just indicates that we refer to the first matrix “pushed” (it is optional, but if the as-
sembly builds two matrices, the second one must be referred this way). The sym function ensure that
the result is symmetric (if this is not done, some round-off errors may cancel the symmetricity, and the
assembly will be a little bit slower). Next, the comp part evaluates a 7D tensor,∫︁

𝜕𝑘𝜙
𝑖
𝑗𝜕𝑛𝜙

𝑙
𝑚𝜓

𝑝,

where 𝜙𝑖
𝑗 is a 𝑗𝑡ℎ component of the 𝑖𝑡ℎ base function of mf and 𝜓𝑝 is a (scalar) base function of the

second mesh_fem. Since we want to assemble∫︁
𝑎(𝑥).∇𝜑𝑖.∇𝜑𝑗 , with 𝑎(𝑥) =

∑︁
𝑝

𝑎𝑝𝜓𝑝(𝑥),

the reduction is: ∑︁
𝑗,𝑘,𝑝

(︂∫︁
𝜕𝑘𝜙

𝑖
𝑗𝜕𝑘𝜙

𝑚
𝑗 𝜓

𝑝

)︂
𝑎𝑝

In the comp function, vGrad was used instead of Grad since we said that we were assembling a
vector Laplacian: that is why each vGrad part has three dimensions (dof number, component number,
and derivative number). For a scalar Laplacian, we could have used comp(Grad(#1).Grad(#1).
Base(#2))(:,k,:,k,p).a(p). But the vector form has the advantage to work in both vector and
scalar case.

The last instruction, assem.assembly(), does evaluate the expression on each convex. For an as-
sembly over a boundary just call assem.assembly(rg), where rg is a getfem::mesh_region
object. rg might also be a number, in that case the mesh region taken into account is mim.
linked_mesh().region(rg).

The third example shows how to compute the 𝐿2 norm of a scalar or vector field on a mesh boundary:

62 Chapter 11. Compute arbitrary terms - low-level generic assembly procedures
(deprecated)

User Documentation, Release 5.4.2

assem.push_im(mim);
assem.push_mf(mf);
assem.push_data(U);
std::vector<scalar_type> v(1);
assem.push_vec(v);
assem.set("u=data(#1);"

"V()+=u(i).u(j).comp(vBase(#1).vBase(#1))(i,k,j,k)");
assem.assembly(boundary_number);

This one is easy to read. When assembly returns, v[0] will contain∑︁
𝑖,𝑗,𝑘

(︂∫︁
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑢𝑖𝜙
𝑖
𝑘𝑢𝑗𝜙

𝑗
𝑘

)︂
The fourth and last example shows an (sub-optimal) assembly of the linear elasticity problem with a
complete Hooke tensor:

assem.set("h=data$1(qdim(#1),qdim(#1),qdim(#1),qdim(#1),#2);"
"t=comp(vGrad(#1).vGrad(#1).Base(#2));"
"e=(t{:,2,3,:,5,6,:}+t{:,3,2,:,5,6,:}+t{:,2,3,:,6,5,:}+t{:,3,2,:,

→˓6,5,:})/4;"
"M(#1,#1)+= sym(e(:,j,k,:,m,n,p).h(j,k,m,n,p))");

The original equations are:∫︁
𝜀(𝜙𝑖) : 𝜎(𝜑𝑗), with 𝜎(𝑢)𝑖𝑗 =

∑︁
𝑘𝑙

ℎ𝑖𝑗𝑘𝑙(𝑥)𝜀𝑘𝑙(𝑢)

where ℎ is the Hooke tensor, and : means the scalar product between matrices. Since we assume it is
not constant, ℎ is given on the second mesh_fem: ℎ𝑖𝑗𝑘𝑙(𝑥) =

∑︀
𝑝 ℎ

𝑝
𝑖𝑗𝑘𝑙𝜓

𝑝. Hence the first line declares
that the first data “pushed” is indeed a five-dimensions tensor, the first fourth ones being all equal to the
target dimension of the first mesh_fem, and the last one being equal to the number of degrees of freedom
of the second mesh_fem. The comp part still computes the same 7D tensor than for the vector Laplacian
case. From this tensor, one evaluates 𝜀(𝜙𝑖)𝑗𝑘𝜀(𝜑

𝑙)𝑚𝑛𝜓
𝑝 via permutations, and finally the expression is

reduced against the hook tensor.

11.1 available operations inside the comp command

• Base(#i): evaluate the value of the base functions of the ith mesh_fem

• Grad(#i): evaluate the value of the gradient of the base functions of the ith mesh_fem

• Hess(#i): evaluate the value of the Hessian of the base functions of the ith mesh_fem

• Normal(): evaluate the unit normal (should not be used for volumic integrations !)

• NonLin$x(#mf1,... #mfn): evaluate the xth non-linear term (inserted with
push_nonlinear_term(pnonlinear_elem_term)) using the listed mesh_fem
objects.

• GradGT(), GradGTInv(): evaluate the gradient (and its inverse) of the geometric transforma-
tion of the current convex.

11.1. available operations inside the comp command 63

User Documentation, Release 5.4.2

Note: you may reference any data object inside the comp command, and perform reductions inside the
comp(). This feature is mostly interesting for speeding up assembly of nonlinear terms (see the file
getfem/getfem_nonlinear_elasticity.h for an example of use).

11.2 others operations

Slices may be mixed with reduction operations t(:,4,i,i) takes a slice at index 4 of the second
dimension, and reduces the diagonal of dimension 3 and 4. Please note that index numbers for slices
start at 1 and not 0 !!

mdim(#2) is evaluated as the mesh dimension associated to the second mesh_fem, while qdim(#2)
is the target dimension of the mesh_fem.

The diagonal of a tensor can be obtained with t{:,:,3,3} (which is strictly equivalent to t{1,2,
3,3}: the colon is just here to improve the readability). This is the same operator than for permutation
operations. Note that t{:,:,1,1} or t{:,:,4,4} are not valid operations.

The print command can be used to see the tensor: "print comp(Base(#1));" will print the
integrals of the base functions for each convex.

If there is more than one data array, output array or output sparse matrix, one can use data$2, data$3,
V$2, M$2,. . .

64 Chapter 11. Compute arbitrary terms - low-level generic assembly procedures
(deprecated)

CHAPTER 12

Some Standard assembly procedures (low-level generic assembly)

Procedures defined in the file getfem/getfem_assembling.h allow the assembly of stiffness ma-
trices, mass matrices and boundary conditions for a few amount of classical partial differential equation
problems. All the procedures have vectors and matrices template parameters in order to be used with
any matrix library.

CAUTION: The assembly procedures do not clean the matrix/vector at the begining of the assembly in
order to keep the possibility to perform several assembly operations on the same matrix/vector. Conse-
quently, one has to clean the matrix/vector before the first assembly operation.

12.1 Laplacian (Poisson) problem

An assembling procedure is defined to solve the problem:

−div(𝑎(𝑥) · grad(𝑢(𝑥))) = 𝑓(𝑥) in Ω,

𝑢(𝑥) = 𝑈(𝑥) on Γ𝐷,

𝜕𝑢

𝜕𝜂
(𝑥) = 𝐹 (𝑥) on Γ𝑁 ,

where Ω is an open domain of arbitrary dimension, Γ𝐷 and Γ𝑁 are parts of the boundary of Ω, 𝑢(𝑥)
is the unknown, 𝑎(𝑥) is a given coefficient, 𝑓(𝑥) is a given source term, 𝑈(𝑥) the prescribed value of
𝑢(𝑥) on Γ𝐷 and 𝐹 (𝑥) is the prescribed normal derivative of 𝑢(𝑥) on Γ𝑁 . The function to be called to
assemble the stiffness matrix is:

getfem::asm_stiffness_matrix_for_laplacian(SM, mim, mfu, mfd, A);

where

• SM is a matrix of any type having the right dimension (i.e. mfu.nb_dof()),

• mim is a variable of type getfem::mesh_im defining the integration method used,

• mfu is a variable of type getfem::mesh_fem and should define the finite element method for
the solution,

65

User Documentation, Release 5.4.2

• mfd is a variable of type getfem::mesh_fem (possibly equal to mfu) describing the finite
element method on which the coefficient 𝑎(𝑥) is defined,

• A is the (real or complex) vector of the values of this coefficient on each degree of freedom of
mfd.

Both mesh_fem should use the same mesh (i.e. &mfu.linked_mesh() == &mfd.
linked_mesh()).

It is important to pay attention to the fact that the integration methods stored in mim, used to compute the
elementary matrices, have to be chosen of sufficient order. The order has to be determined considering
the polynomial degrees of element in mfu, in mfd and the geometric transformations for non-linear
cases. For example, with linear geometric transformations, if mfu is a 𝑃𝐾 FEM, and mfd is a 𝑃𝐿

FEM, the integration will have to be chosen of order ≥ 2(𝐾 − 1) + 𝐿, since the elementary integrals
computed during the assembly of SM are

∫︀
∇𝜙𝑖∇𝜙𝑗𝜓𝑘 (with 𝜙𝑖 the basis functions for mfu and 𝜓𝑖 the

basis functions for mfd).

To assemble the source term, the function to be called is:

getfem::asm_source_term(B, mim, mfu, mfd, V);

where B is a vector of any type having the correct dimension (still mfu.nb_dof()), mim is a vari-
able of type getfem::mesh_im defining the integration method used, mfd is a variable of type
getfem::mesh_fem (possibly equal to mfu) describing the finite element method on which 𝑓(𝑥) is
defined, and V is the vector of the values of 𝑓(𝑥) on each degree of freedom of mfd.

The function asm_source_term also has an optional argument, which is a reference to
a getfem::mesh_region (or just an integer i, in which case mim.linked_mesh().
region(i) will be considered). Hence for the Neumann condition on Γ𝑁 , the same function:

getfem::asm_source_term(B, mim, mfu, mfd, V, nbound);

is used again, with nbound is the index of the boundary Γ𝑁 in the linked mesh of mim, mfu and mfd.

There is two manner (well not really, since it is also possible to use Lagrange multipliers, or to use
penalization) to take into account the Dirichlet condition on Γ𝐷, changing the linear system or explicitly
reduce to the kernel of the Dirichlet condition. For the first manner, the following function is defined:

getfem::assembling_Dirichlet_condition(SM, B, mfu, nbound, R);

where nbound is the index of the boundary Γ𝐷 where the Dirichlet condition is applied, R is the vector
of the values of 𝑅(𝑥) on each degree of freedom of mfu. This operation should be the last one because
it transforms the stiffness matrix SM. It works only for Lagrange elements. At the end, one obtains the
discrete system:

[𝑆𝑀]𝑈 = 𝐵,

where 𝑈 is the discrete unknown.

For the second manner, one should use the more general:

getfem::asm_dirichlet_constraints(H, R, mim, mf_u, mf_mult,
mf_r, r, nbound).

See the Dirichlet condition as a general linear constraint that must satisfy the solution 𝑢. This function
does the assembly of Dirichlet conditions of type

∫︀
Γ 𝑢(𝑥)𝑣(𝑥) =

∫︀
Γ 𝑟(𝑥)𝑣(𝑥) for all 𝑣 in the space of

66 Chapter 12. Some Standard assembly procedures (low-level generic assembly)

User Documentation, Release 5.4.2

multiplier defined by mf_mult. The fem mf_mult could be often chosen equal to mf_u except when
mf_u is too “complex”.

This function just assemble these constraints into a new linear system 𝐻𝑢 = 𝑅, doing some additional
simplification in order to obtain a “simple” constraints matrix.

Then, one should call:

ncols = getfem::Dirichlet_nullspace(H, N, R, Ud);

which will return a vector 𝑈𝑑 which satisfies the Dirichlet condition, and an orthogonal basis 𝑁 of the
kernel of 𝐻 . Hence, the discrete system that must be solved is:

(𝑁 ′[𝑆𝑀]𝑁)𝑈𝑖𝑛𝑡 = 𝑁 ′(𝐵 − [𝑆𝑀]𝑈𝑑),

and the solution is $U=N U_{int}+U_d$. The output matrix 𝑁 should be a 𝑛𝑏𝑑𝑜𝑓 × 𝑛𝑏𝑑𝑜𝑓 (sparse)
matrix but should be resized to ncols columns. The output vector 𝑈𝑑 should be a 𝑛𝑏𝑑𝑜𝑓 vector. A big
advantage of this approach is to be generic, and do not prescribed for the finite element method mf_u
to be of Lagrange type. If mf_u and mf_d are different, there is implicitly a projection (with respect to
the 𝐿2 norm) of the data on the finite element mf_u.

If you want to treat the more general scalar elliptic equation div(𝐴(𝑥)∇𝑢), where𝐴(𝑥) is square matrix,
you should use:

getfem::asm_stiffness_matrix_for_scalar_elliptic(M, mim, mfu,
mfdata, A);

The matrix data A should be defined on mfdata. It is expected as a vector representing a 𝑛×𝑛×𝑛𝑏𝑑𝑜𝑓
tensor (in Fortran order), where 𝑛 is the mesh dimension of mfu, and 𝑛𝑏𝑑𝑜𝑓 is the number of dof of
mfdata.

12.2 Linear Elasticity problem

The following function assembles the stiffness matrix for linear elasticity:

getfem::asm_stiffness_matrix_for_linear_elasticity(SM, mim, mfu,
mfd, LAMBDA, MU);

where SM is a matrix of any type having the right dimension (i.e. here mfu.nb_dof()), mim is a
variable of type getfem::mesh_im defining the integration method used, mfu is a variable of type
getfem::mesh_fem and should define the finite element method for the solution, mfd is a variable
of type getfem::mesh_fem (possibly equal to mfu) describing the finite element method on which
the Lamé coefficient are defined, LAMBDA and MU are vectors of the values of Lamé coefficients on each
degree of freedom of mfd.

Caution: Linear elasticity problem is a vectorial problem, so the target dimension of mfu (see
mf.set_qdim(Q)) should be the same as the dimension of the mesh.

In order to assemble source term, Neumann and Dirichlet conditions, same functions as in previous
section can be used.

12.2. Linear Elasticity problem 67

User Documentation, Release 5.4.2

12.3 Stokes Problem with mixed finite element method

The assembly of the mixed term 𝐵 = −
∫︀
𝑝∇.𝑣 is done with:

getfem::asm_stokes_B(MATRIX &B, const mesh_im &mim,
const mesh_fem &mf_u, const mesh_fem &mf_p);

12.4 Assembling a mass matrix

Assembly of a mass matrix between two finite elements:

getfem::asm_mass_matrix(M, mim, mf1, mf2);

It is also possible to obtain mass matrix on a boundary with the same function:

getfem::asm_mass_matrix(M, mim, mf1, mf2, nbound);

where nbound is the region index in mim.linked_mesh(), or a mesh_region object.

68 Chapter 12. Some Standard assembly procedures (low-level generic assembly)

CHAPTER 13

Interpolation of arbitrary quantities

Once a solution has been computed, it is quite easy to extract any quantity of interest on it with the
interpolation functions for instance for post-treatment.

13.1 Basic interpolation

The file getfem/getfem_interpolation.h defines the function
getfem::interpolation(...) to interpolate a solution from a given mesh/finite element
method on another mesh and/or another Lagrange finite element method:

getfem::interpolation(mf1, mf2, U, V, extrapolation = 0);

where mf1 is a variable of type getfem::mesh_fem and describes the finite element method on
which the source field U is defined, mf2 is the finite element method on which U will be interpolated.
extrapolation is an optional parameter. The values are 0 not to allow the extrapolation, 1 for an
extrapolation of the exterior points near the boundary and 2 for the extrapolation of all exterior points
(could be expensive).

The dimension of U should be a multiple of mf1.nb_dof(), and the interpolated data V should be
correctly sized (multiple of mf2.nb_dof()).

. . . important:

``mf2`` should be of Lagrange type for the interpolation to make sense but
→˓the
meshes linked to ``mf1`` and ``mf2`` may be different (and this is the
interest of this function). There is no restriction for the dimension of
→˓the
domain (you can interpolate a 2D mesh on a line etc.).

If you need to perform more than one interpolation between the same finite element methods, it might
be more efficient to use the function:

69

User Documentation, Release 5.4.2

getfem::interpolation(mf1, mf2, M, extrapolation = 0);

where M is a row matrix which will be filled with the linear map representing the interpolation (i.e.
such that V = MU). The matrix should have the correct dimensions (i.e. mf2.nb_dof()``x``mf1.
nb_dof()). Once this matrix is built, the interpolation is done with a simple matrix multiplication:

gmm::mult(M, U, V);

13.2 Interpolation based on the generic weak form language
(GWFL)

It is possible to extract some arbitrary expressions on possibly several fields thanks to GWFL and the
interpolation functions.

This is specially dedicated to the model object (but it can also be used with a ga_workspace object).
For instance if md is a valid object containing some defined variables u (vectorial) and p (scalar), one
can interpolate on a Lagrange finite element method an expression such as p*Trace(Grad_u). The
resulting expression can be scalar, vectorial or tensorial. The size of the resulting vector is automatically
adapted.

The high-level generic interpolation functions are defined in the file getfem/
getfem_generic_assembly.h.

There is different interpolation functions corresponding to the interpolation on a Lagrange fem on the
same mesh, the interpolation on a cloud on points or on a getfem::im_data object.

Interpolation on a Lagrange fem:

void getfem::ga_interpolation_Lagrange_fem(workspace, mf, result);

where workspace is a getfem::ga_workspace object which aims to store the different variables
and data (see Compute arbitrary terms - high-level generic assembly procedures - Generic Weak-Form
Language (GWFL)), mf is the getfem::mesh_fem object reresenting the Lagrange fem on which
the interpolation is to be done and result is a beot::base_vector which store the interpolatin.
Note that the workspace should contain the epression to be interpolated.

void getfem::ga_interpolation_Lagrange_fem(md, expr, mf, result, rg=mesh_
→˓region::all_convexes());

where md is a getfem::model object (containing the variables and data), expr (std::string object)
is the expression to be interpolated, mf is the getfem::mesh_fem object reresenting the Lagrange
fem on which the interpolation is to be done, result is the vector in which the interpolation is stored
and rg is the optional mesh region.

Interpolation on a cloud of points:

void getfem::ga_interpolation_mti(md, expr, mti, result, extrapolation = 0,
→˓ rg=mesh_region::all_convexes(), nbpoints = size_type(-1));

where md is a getfem::model object (containing the variables and data), expr (std::string object)
is the expression to be interpolated, mti is a getfem::mesh_trans_inv object which stores the
cloud of points (see getfem/getfem_interpolation.h), result is the vector in which the

70 Chapter 13. Interpolation of arbitrary quantities

User Documentation, Release 5.4.2

interpolation is stored, extrapolation is an option for extrapolating the field outside the mesh for
outside points, rg is the optional mesh region and nbpoints is the optional maximal number of points.

Interpolation on an im_data object (on the Gauss points of an integration method):

void getfem::ga_interpolation_im_data(md, expr, im_data &imd,
base_vector &result, const mesh_region &rg=mesh_region::all_convexes());

where md is a getfem::model object (containing the variables and data), expr (std::string object)
is the expression to be interpolated, imd is a getfem::im_data object which refers to a integration
method (see getfem/getfem_im_data.h), result is the vector in which the interpolation is
stored and rg is the optional mesh region.

13.2. Interpolation based on the generic weak form language (GWFL) 71

User Documentation, Release 5.4.2

72 Chapter 13. Interpolation of arbitrary quantities

CHAPTER 14

Incorporate new finite element methods in GetFEM

Basically, It is sufficient to describe an element on the reference element, i.e. to describe each base
function of each degree of freedom. Intrinsically vectorial elements are supported (see for instance
Nedelec and Raviart-Thomas elements). Finite element methods that are not equivalent via the geometric
transformation (not 𝜏 -equivalent in GetFEM jargon, such as vectorial elements, Hermite elements . . .)
an additional linear transformation of the degrees of freedom depending on the real element should be
described (see the implementation of Argyris element for instance).

Please read dp for more details and see the files getfem/getfem_fem.h, getfem_fem.cc for
practical implementation.

73

User Documentation, Release 5.4.2

74 Chapter 14. Incorporate new finite element methods in GetFEM

CHAPTER 15

Incorporate new approximated integration methods in GetFEM

A perl script automatically incorporates new cubature methods from a description file. You can
see in the directory cubature such description files (with extension .IM) . For instance for
IM_TETRAHEDRON(5) the following file describes the method:

NAME = IM_TETRAHEDRON(5)
N = 3
GEOTRANS = GT_PK(3,1)
NBPT = 4
0, 0.25, 0.25, 0.25, 0.008818342151675485
1, 0.31979362782962991, 0.31979362782962991, 0.31979362782962991, 0.
→˓011511367871045398
1, 0.091971078052723033, 0.091971078052723033, 0.091971078052723033, 0.
→˓01198951396316977
1, 0.056350832689629156, 0.056350832689629156, 0.44364916731037084, 0.
→˓008818342151675485
NBF = 4 IM_TRIANGLE(5)
IM_TRIANGLE(5)
IM_TRIANGLE(5)
IM_TRIANGLE(5)

where NAME is the name of the method in GetFEM (constant integer parameter are allowed), N is the
dimension, GEOTRANS describes a valid geometric transformation of GetFEM. This geometric trans-
formation just defines the reference element on which the integration method is described. NBPT is the
number of integration node definitions. Integration node definitions include a symmetry definition such
that the total number of integration nodes would be greater than NBPT.

Composition of the integration node definition:

• an integer: 0 = no symmetry, 1 = full symmetric (x6 for a triangle, x4 for a quadrangle, x24 for a
tetrahedron . . .),

• the N coordinates of the integration node,

• the load.

NBF is the number of faces of the reference element (should correspond to GEOTRANS). Then follows an

75

User Documentation, Release 5.4.2

already existing integration method for each face (each on a line). This is necessary to make integrations
on boundaries.

The file format is inspired from [EncyclopCubature].

76 Chapter 15. Incorporate new approximated integration methods in GetFEM

CHAPTER 16

Level-sets, Xfem, fictitious domains, Cut-fem

Since v2.0, GetFEM offers a certain number of facilities to support Xfem and fictitious domain methods
with a cut-fem strategy. Most of these tools have been initially mainly developed by Julien Pommier for
the study published in [LA-PO-RE-SA2005].

The implementation is a fairly large generality, based on the use of level-sets, as suggested in
[SU-CH-MO-BE2001] and allows simultaneous use of a large number of level-sets which can cross.

The Xfem implementation for the discretization of the jump follows the strategy of [HA-HA2004] al-
though we had no knowledge of this work during implementation. This means that there is no degree
of freedom representing the jump across the level-set. Instead, the degrees of freedom represent the
displacement of each side of the level-set. This is essential in any way in the presence of level-set that
intersect each other because it may exist more than two different zones of continuity inside a single
element.

The cut fem strategy for fictitious domain method has been used for the first time with GetFEM for
the study published in [HA-RE2009] where a quite simple stabilization strategy is proposed. Here also,
before knowing the existence of the Work of E. Burman and P. Hanbo [bu-ha2010] on that topic.

The tools for Xfem have been then enriched by the PhD works of J. Larsy (see for instance
[LA-RE-SA2010]) the one of E. Chahine (see for instance [CH-LA-RE2011], [NI-RE-CH2011]), of S.
Amdouni (see for instance [AM-MO-RE2014], [AM-MO-RE2014b]) and of M. Fabre (see for instance
[Fa-Po-Re2015]).

Important: All the tools listed below needs the package qhull installed on your system. This package
is widely available. It computes convex hull and Delaunay triangulations in arbitrary dimension.

The programs tests/crack.cc, interface/tests/matlab/crack.m and interface/
tests/python/crack.py are some good examples of use of these tools.

77

http://www.qhull.org

User Documentation, Release 5.4.2

16.1 Representation of level-sets

Some structure are defined to manipulate level-set functions defined by piecewise polynomial func-
tion on a mesh. In the file getfem/getfem_levelset.h a level-set is represented by a func-
tion defined on a Lagrange fem of a certain degree on a mesh. The constructor to define a new
getfem::level_set is the following:

getfem::level_set ls(mesh, degree = 1, with_secondary = false);

where mesh is a valid mesh of type getfem::mesh, degree is the degree of the polynomials (1 is
the default value), and with_secondary is a boolean whose default value is false. The secondary
level-set is used to represent fractures (if 𝑝(𝑥) is the primary level-set function and 𝑠(𝑥) is the secondary
level-set function, the crack is defined by 𝑝(𝑥) = 0 and 𝑠(𝑥) ≤ 0: the role of the secondary is to delimit
the crack).

Each level-set function is defined by a mesh_fem mf and the dof values over this mesh_fem, in a vec-
tor. The object getfem::level_set contains a mesh_fem and the vectors of dof for the corre-
sponding function(s). The method ls.value(0) returns the vector of dof for the primary level-set
function, so that these values can be set. The method ls.value(1) returns the dof vector for the
secondary level-set function if any. The method ls.get_mesh_fem() returns a reference on the
getfem::mesh_fem object.

Note that, in applications, the level-set function often evolves thanks to an Hamilton-Jacobi equation
(for its re-initialization for instance). See the A pure convection method which can be used in the ap-
proximation of a Hamilton-Jacobi equation.

16.2 Mesh cut by level-sets

In order to compute adapted integration methods and finite element methods to represent a field
which is discontinuous across one or several level-sets, a certain number of pre-computations have
to be done at the mesh level. In getfem/getfem_mesh_level_set.h is defined the object
getfem::mesh_level_set which handles these pre-computations. The constructor of this object
is the following:

getfem::mesh_level_set mls(mesh);

where mesh is a valid mesh of type getfem::mesh. In order to indicate that the mesh is cut by
a level-set, one has to call the method mls.add_level_set(ls), where ls is an object of type
getfem::level_set. An arbitrary number of level-sets can be added. To initialize the object or
to actualize it when the value of the level-set function is modified, one has to call the method mls.
adapt().

In particular a subdivision of each element cut by the level-set is made with simplices. Note that the
whole cut-mesh is generally not conformal.

The cut-mesh can be obtained for instance for post-treatment thanks to mls.global_cut_mesh(m)
which fill m with the cut-mesh.

78 Chapter 16. Level-sets, Xfem, fictitious domains, Cut-fem

User Documentation, Release 5.4.2

16.3 Adapted integration methods

For fields which are discontinuous across a level-set, integration methods have to be
adapted. The object getfem::mesh_im_level_set defined in the file getfem/
getfem_mesh_im_level_set.h defines a composite integration method for the elements
cut by the level-set. The constructor of this object is the following:

getfem::mesh_im_level_set mim(mls, where, regular_im = 0, singular_im = 0);

where mls is an object of type getfem::mesh_level_set, where is an enum for which possible
values are

• getfem::mesh_im_level_set::INTEGRATE_INSIDE (integrate over 𝑝(𝑥) < 0),

• getfem::mesh_im_level_set::INTEGRATE_OUTSIDE (integrate over 𝑝(𝑥) > 0),

• getfem::mesh_im_level_set::INTEGRATE_ALL,

• getfem::mesh_im_level_set::INTEGRATE_BOUNDARY (integrate over 𝑝(𝑥) = 0 and
𝑠(𝑥) ≤ 0)

The argument regular_im should be of type pintegration_method, and will be the integration
method applied on each sub-simplex of the composite integration for elements cut by the level-set.
The optional singular_im should be also of type pintegration_method and is used for crack
singular functions: it is applied to sub-simplices which share a vertex with the crack tip (the specific
integration method IM_QUASI_POLAR(..) is well suited for this purpose).

The object getfem::mesh_im_level_set can be used as a classical getfem::mesh_im ob-
ject (for instance the method mim.set_integration_method(...) allows to set the integration
methods for the elements which are not cut by the level-set).

To initialize the object or to actualize it when the value of the level-set function is modified, one has to
call the method mim.adapt().

When more than one level-set is declared on the getfem::mesh_level_set object, it is possible
to set more precisely the integration domain using the method:

mim.set_level_set_boolean_operations("desc");

where “desc” is a string containing the description of the boolean operation which defines the integration
domain. The syntax is simple, for example if there are 3 different level-set,

“a*b*c” is the intersection of the domains defined by each level-set (this is the default
behavior if this function is not called).

“a+b+c” is the union of their domains.

“c-(a+b)” is the domain of the third level-set minus the union of the domains of the two
others.

“!a” is the complementary of the domain of a (i.e. it is the domain where a(x)>0)

The first level-set is always referred to with “a”, the second with “b”, and so on.

16.3. Adapted integration methods 79

User Documentation, Release 5.4.2

16.4 Cut-fem

The implementation of a cut finite element method such as described in [bu-ha2010], i.e. a finite element
on a fictitious domain restricted to a smaller real domain, is possible just using the previous tools and
mainly the adapted integration method. Several examples are available on GetFEM test programs. See
for instance interface/tests/python/demo_fictitious_domain.py or interface/
tests/matlab/demo_fictitious_domain.m.

In this context, one often needs to restrict the unknown finite element field to the degrees of free-
dom whose corresponding shape function supports have an intersection with the real domain. This can
be done using the partial_mesh_fem object. See for instance interface/tests/matlab/
demo_structural_optimization.m.

Note that often, a stabilization technique have to be considered in order to treat eventual locking phe-
nomena due to element with very small intersection with the real domain for example when applying a
Dirichlet condition. See for instance [bu-ha2010], [HA-RE2009] and [Fa-Po-Re2015].

16.5 Discontinuous field across some level-sets

The object getfem::mesh_fem_level_set is defined in the file getfem/
getfem_mesh_fem_level_set.h. It is derived from getfem::mesh_fem object and
can be used in the same way. It defines a finite element method with discontinuity across the level-sets
(it can deal with an arbitrary number of level-sets). The constructor is the following:

getfem::mesh_fem_level_set mfls(mls, mf);

where mls is a valid mesh of type getfem::mesh_level_set and mf is the an object of type
getfem::mesh_fem which defines the finite element method used for elements which are not cut by
the level-sets.

To initialize the object or to actualize it when the value of the level-set function is modified, one has to
call the method mfls.adapt().

To represent discontinuous fields, the finite element method is enriched with discontinuous functions
which are the product of some Heaviside functions by the shape functions of the finite element method
represented by mf (see [HA-HA2004] and [Xfem] for more details).

16.6 Xfem

The Xfem (see [Xfem]) consists not only in the enrichment with some Heaviside functions (which
is done by the object getfem::mesh_fem_level_set) but also the enrichment with asymp-
totic displacement at the crack tip. There is several manner to enrich with an asymptotic displace-
ment: enrichment only on the element containing the crack tip as in [Xfem], enrichment in a fixed
size zone as in [LA-PO-RE-SA2005] or [Be-Mi-Mo-Bu2005], enrichment with a cut-off function as in
[CH-LA-RE2008] or [NI-RE-CH2011] or with an integral matching condition between the enriched and
non-enriched zones as in [CH-LA-RE2011]. The choice in Getfem fell on maximum flexibility to easily
implement all possibilities. As it is mainly a transformation of the finite element method itself, two tools
have been defined to produce some enriched finite elements:

getfem::mesh_fem_product mf_asympt(mf_part_unity, mf_sing)
getfem::mesh_fem_sum mf_sum(mf1, mf2)

80 Chapter 16. Level-sets, Xfem, fictitious domains, Cut-fem

User Documentation, Release 5.4.2

where mf_sing should be a global ‘finite element method’, in fact just a col-
lection of global functions (with or without a cut-off function) defined thanks to
the object getfem::mesh_fem_global_function (see the file src/getfem/
getfem_mesh_fem_global_function.h) and mf_part_unity a basic scalar finite
element method. The resulting ‘‘ getfem::mesh_fem_product‘‘ is the linear combination of all
the product of the shape function of the two given finite element methods, possibly restricted to a
sub-set of degrees of freedom of the first finite element method given by the method mf_asympt.
set_enrichment(enriched_dofs).

Once the asymptotic enrichment is defined, the object getfem::mesh_fem_sum allows to produce
the direct sum of two finite element methods. For instance of the one enriched by the Heaviside functions
(getfem::mesh_fem_level_set object) and the asymptotic enrichment.

See interface/tests/matlab/demo_crack.m, interface/tests/python/
demo_crack.py or tests/crack.cc for some examples of use of these tools.

Additionally, GWFL, the generic weak form language, defines the two commands Xfem_plus and
Xfem_minus allowing to take into account the jump of any field or derivative of any field across a
level-set (see Xfem discontinuity evaluation (with mesh_fem_level_set)). This a priori allows to write
any interface law easily.

Note also that some procedures are available in the file src/getfem/getfem_crack_sif.h to
compute the stress intensity factors in 2D (restricted to homogeneous isotropic linearized elasticity).

16.7 Post treatment

Several tools are available to represent the solution only on a side of a levels-set or on both taking into
account the discontinuity (for Xfem approximation).

When a cut-mesh mls is used (i.e. a getfem::mesh_level_set object), is is possible to obtain
the set of all sub-elements with the command:

mls.global_cut_mesh(mcut);

where mcut has to be an empty mesh which will be fill by the sub-elements. Note that the resulting
mesh is a non-regular one in the sense that the sub-mesh of all elements are not conformal at the element
edges/faces. It is however possible to interolate on a Lagrange fem on this mesh and make a post-
treatment with it to correctly represent a discontinuous field.

Another mean to represent only the interesting part of the solution when a fictitious domain method is
used is to use the mesh slices defined by an isovalue level-set (see Producing mesh slices).

see for instance files interface/tests/matlab/demo_crack.m, interface/
tests/python/demo_fictitious_domain.py and interface/tests/matlab/
demo_structural_optimization.m.

16.7. Post treatment 81

User Documentation, Release 5.4.2

82 Chapter 16. Level-sets, Xfem, fictitious domains, Cut-fem

CHAPTER 17

Tools for HHO (Hybrid High-Order) methods

HHO method are hybrid methods in the sense that they have both degrees of freedom located on the
element of a mesh and on the faces of the elements which represent separated approximations. HHO
method are primal methods in the sense that both the degree of freedom in the element and on the
faces represent the main unknown of the problem (no lagrange multipliers is introduced). The interest of
these methods, first developped in [Di-Er2015], [Di-Er2017] is their accuracy and their great robustness,
in particular with respect to the element shapes and their locking-free properties. Moreover, they can
be extended without difficulty to the approximation of nonlinear problems (see [AB-ER-PI2018] for
hyper-elasticity, [AB-ER-PI2019] for plasticity and [ca-ch-er2019] for contact problems).

HHO methods can be applied to arbitrary shape elements. However, the implementation in GetFEM is
for the moment limited to standard elements : simplices, quadrilaterals, hexahedrons, . . . Moreover this
implementation is still experimental and not pretending to optimality. For the moment, there is no tool
to make an automatic condensation of internal dofs.

17.1 HHO elements

HHO elements are composite ones having a polynomial approximation space for the interior of the
element and a polynomial approximation for each face of the element. Moreover, this is a discontinous
approximation, in the sens that no continuity is prescribed between the approximation inside the element
and the approximation on the faces, neither than between the approximations on two different faces of
the element. However, when two neighbor elements share a face, the approximation on this face is
shared by the two elements. GetFEM provide a specific method simply called FEM_HHO(fem_int,
fem_face1, fem_face2, ...) which allows to build an hybrid method from standard finite
element spaces. For instance, on a triangle, a possible HHO method can be obtained with:

getfem::pfem pf = getfem::fem_descriptor("HHO(FEM_SIMPLEX_IPK(2,2), FEM_
→˓SIMPLEX_CIPK(1,2))");

The first argument to FEM_HHO(...) is the fem for the interior of the element. It has to be a discon-
tinuous FEM. The method FEM_SIMPLEX_IPK(2,2) is a discontinous method having its degrees of
freedom in the strict interior of the element, which ensure that no dof identification will be done. The

83

User Documentation, Release 5.4.2

second argument is the fem for the faces (if only one method is given, it will be applied to all faces, but it
is also possible to give a different method for each face). Their is no verification on the fact that the given
method are of discontinuous type (In fact, a method like FEM_HHO(FEM_PK(2,2), FEM_PK(1,
2)) will have no difference with FEM_PK(2,2) since the degree of freedom on the faces will be
identified with the interior ones).

For the moment, the fursnished element for interior and faces are - FEM_SIMPLEX_IPK(n,
k) : interior PK element of degree k for the simplices in dimension n (equivalent to
FEM_PK_DISCONTINUOUS(n,k,0.1)). - FEM_QUAD_IPK(n,k) : interior PK element of de-
gree k for the quadrilaterals in dimension n. - FEM_PRISM_IPK(n,k) : interior PK element of degree
k for the prisms in dimension n. - FEM_SIMPLEX_CIPK(n,k) : interior PK element on simplices
which is additionnaly connectable. Designed to be use on HHO element face. - FEM_QUAD_CIPK(k)
: interior PK element on a quadrilateral which is additionnaly connectable. Designed to be use on HHO
element face.

17.2 Reconstruction operators

For a variable u, we will note 𝑢𝑇 its value in the interior of the element 𝑇 and 𝑢𝜕𝑇 its value on the
boundary of 𝑇 (corresponding to the two different approximations). The reconstruction operators are
implemeted in GetFEM as elementary transformations, as described in the section Elementary transfor-
mations.

17.2.1 Reconstructed gradient

The first reconstruction operator is the reconstructed gradient. Given a certain polynomial space 𝑉𝐺, the
reconstructed gradient 𝐺(𝑢) will be the solution to the local problem∫︁

𝑇
𝐺(𝑢) : 𝜏𝑑𝑥 =

∫︁
𝑇
∇𝑢𝑇 : 𝜏𝑑𝑥+

∫︁
𝜕𝑇

(𝑢𝜕𝑇 − 𝑢𝑇).(𝜏𝑛𝑇)𝑑Γ, ∀𝜏 ∈ 𝑉𝐺

where 𝑛𝑇 is the outward unit normal to 𝑇 on 𝜕𝑇 . Note that the space 𝑉 is a vector-valued one if u is a
scalar field variable (in that case, 𝐺(𝑢) : 𝜏 reduces to 𝐺(𝑢).𝜏) and a matrix-valued one if u is a vector
field variable.

In order to be used, the elementary transformation corresponding to this operator has first to be added to
the model by the command:

add_HHO_reconstructed_gradient(model, transname);

where transname is an arbitrary name which will designate the transformation in GWFL (the
generic weak form language). Then, it will be possible to refer to the reconstructed gradi-
ent of a variable u into GWFL as Elementary_transformation(u, HHO_grad, Gu), if
transname="HHO_grad". The third parameter of the transformation Gu should be a fem variable
or a data of the model. This variable will not be used on itself but will determine the finite element space
of the reconstruction (the space 𝑉𝐺).

This is an example of use with the Python interface for a two-dimensional triangule mesh m

mfu = gf.MeshFem(m, 1)
mfgu = gf.MeshFem(m, N)
mfu.set_fem(gf.Fem('FEM_HHO(FEM_SIMPLEX_IPK(2,2),FEM_SIMPLEX_CIPK(1,2))'))
mfgu.set_fem(gf.Fem('FEM_PK(2,2)'))

(continues on next page)

84 Chapter 17. Tools for HHO (Hybrid High-Order) methods

User Documentation, Release 5.4.2

(continued from previous page)

md = gf.Model('real')
md.add_fem_variable('u', mfu)
md.add_fem_data('Gu', mfgu)

md.add_HHO_reconstructed_gradient('HHO_Grad')
md.add_macro('HHO_Grad_u', 'Elementary_transformation(u, HHO_Grad, Gu)')
md.add_macro('HHO_Grad_Test_u', 'Elementary_transformation(Test_u, HHO_
→˓Grad, Gu)')

The macro definitions allowing to use the gradient of the variable inside weak formulations as usual. For
instance, the addition of a weak term for the Laplace equation can then be simply written:

md.add_linear_term(mim, 'HHO_Grad_u.HHO_Grad_Test_u')

Two complete examples of use are given in the test programs interface/tests/
demo_laplacian_HHO.py and interface/tests/demo_elasticity_HHO.py.

17.2.2 Reconstructed symmetrized gradient

The symmetrized gradient is only for vector field variables and additionally when the vector field dimen-
sion is the same as the domain dimension. This is usually the case for instance for elasticity problems.
With the same notation as in the previous section, the reconstructed gradient 𝐺𝑠(𝑢) will be the solution
to the local problem∫︁

𝑇
𝐺𝑠(𝑢) : 𝜏𝑑𝑥 =

∫︁
𝑇
∇𝑠𝑢𝑇 : 𝜏𝑑𝑥+

∫︁
𝜕𝑇

(𝑢𝜕𝑇 − 𝑢𝑇).(𝜏
𝑠𝑛𝑇)𝑑Γ, ∀𝜏 ∈ 𝑉𝐺

where ∇𝑠𝑢𝑇 = (∇𝑢𝑇 + (∇𝑢𝑇)𝑇)/2 and 𝜏 𝑠 = (𝜏 + 𝜏𝑇)/2.

The elementary transformation corresponding to this operator can be added to the model by the com-
mand:

add_HHO_reconstructed_symmetrized_gradient(model, transname);

and then be used into GWFL as Elementary_transformation(u, HHO_sym_grad, Gu), if
transname="HHO_sym_grad", with Gu still determining the reconstruction space.

17.2.3 Reconstructed variable

A recontruction of higher order can be done using both the approximation on the interior and the ap-
proximation on the faces. The recontructed variable 𝐷(𝑢) will be the solution to the local Neumann
problem on a chosen space 𝑉𝐷∫︁

𝑇
∇𝐷(𝑢).∇𝑣𝑑𝑥 =

∫︁
𝑇
∇𝑢𝑇 .∇𝑣𝑑𝑥+

∫︁
𝜕𝑇

(𝑢𝜕𝑇 − 𝑢𝑇).(∇𝑣𝑛𝑇)𝑑Γ, ∀𝑣 ∈ 𝑉𝐷

with the additional constraint ∫︁
𝑇
𝐷(𝑢)𝑑𝑥 =

∫︁
𝑇
𝑢𝑇𝑑𝑥

The corresponding elementary transformation can be added to the model by the command:

17.2. Reconstruction operators 85

User Documentation, Release 5.4.2

add_HHO_reconstructed_value(model, transname);

and used into GWFL as Elementary_transformation(u, HHO_val, ud), if
transname="HHO_val", with ud determining the reconstruction space.

17.2.4 Reconstructed variable with symmetrized gradient

A variant of the recontruction of a variable is the one using a symmetrized gradient. It can be used only
for vector field variables and additionally when the vector field dimension is the same as the domain
dimension. The recontructed variable 𝐷(𝑢) will be the solution to the local Neumann problem on a
chosen space 𝑉𝐷∫︁

𝑇
∇𝑠𝐷(𝑢).∇𝑠𝑣𝑑𝑥 =

∫︁
𝑇
∇𝑠𝑢𝑇 .∇𝑠𝑣𝑑𝑥+

∫︁
𝜕𝑇

(𝑢𝜕𝑇 − 𝑢𝑇).(∇𝑠𝑣𝑛𝑇)𝑑Γ, ∀𝑣 ∈ 𝑉𝐷

with the additional constraints∫︁
𝑇
𝐷(𝑢)𝑑𝑥 =

∫︁
𝑇
𝑢𝑇𝑑𝑥∫︁

𝑇
Skew(∇𝐷(𝑢))𝑑𝑥 =

∫︁
𝜕𝑇

(𝑛𝑇 ⊗ 𝑢𝜕𝑇 − 𝑢𝜕𝑇 ⊗ 𝑛𝑇)/2𝑑Γ

where Skew(∇𝐷(𝑢)) = (∇𝐷(𝑢)− (∇𝐷(𝑢))𝑇)/2.

The corresponding elementary transformation can be added to the model by the command:

add_HHO_reconstructed_value(model, transname);

and used into GWFL as Elementary_transformation(u, HHO_val, ud), if
transname="HHO_val", with ud determining the reconstruction space.

17.3 Stabilization operators

The stabilization operators is an operator that measure in a sense the discontinuity of the approximation.
A stabilization is obtained by a penalization term using this operator. The stabilization operator 𝑆(𝑢) is
defined on the boundary space 𝑉𝜕𝑇 of the element, with the formula

𝑆(𝑢) = Π𝜕𝑇 (𝑢𝜕𝑇 −𝐷(𝑢)−Π𝑇 (𝑢𝑇 −𝐷(𝑢)))

where 𝐷(𝑢) is the reconstruction operator on a polynomial space one degree higher that the finite ele-
ment space used for the variable, Π𝜕𝑇 is the 𝐿2 projection onto the space of the face approximations and
Π𝑇 the 𝐿2 projection onto the space of the interior of the element.

For vector field variables having the same dimension as the domain, there exists also a stabilization
operator using the symmetrized gradient, which is defined by

𝑆𝑠(𝑢) = Π𝜕𝑇 (𝑢𝜕𝑇 −𝐷𝑠(𝑢)−Π𝑇 (𝑢𝑇 −𝐷𝑠(𝑢)))

The corresponding elementary transformations can be added to the model by the two commands:

add_HHO_stabilization(model, transname);
add_HHO_symmetrized_stabilization(model, transname);

86 Chapter 17. Tools for HHO (Hybrid High-Order) methods

User Documentation, Release 5.4.2

and used into GWFL as Elementary_transformation(u, HHO_stab), if
transname="HHO_stab". A third argument is optional to specify the target (HHO) space (the
default is one of the variable itself). An example of use is also given in the test programs interface/
tests/demo_laplacian_HHO.py and interface/tests/demo_elasticity_HHO.py.

17.3. Stabilization operators 87

User Documentation, Release 5.4.2

88 Chapter 17. Tools for HHO (Hybrid High-Order) methods

CHAPTER 18

Interpolation/projection of a finite element method on non-matching
meshes

A special finite element method is defined in getfem/getfem_interpolated_fem.h which is
not a real finite element method, but a pseudo-fem which interpolates a finite element method defined
on another mesh. If you need to assemble a matrix with finite element methods defined on different
meshes, you may use the “interpolated fem” or “projected fem” for that purpose:

// interpolation within a volume
getfem::new_interpolated_fem(getfem::mesh_fem mf, getfem::mesh_im mim);
// projection on a surface
getfem::new_projected_fem(getfem::mesh_fem mf, getfem::mesh_im mim);

Because each base function of the finite element method has to be interpolated, such a computation can
be a heavy procedure. By default, the interpolated fem object store the interpolation data.

The interpolation is made on each Gauss point of the integration methods of mim, so only this integration
method can be used in assembly procedures.

For instance if you need to compute the mass matrix between two different finite element methods
defined on two different meshes, this is an example of code which interpolate the second FEM. on the
mesh of the first FEM., assuming that mf describes the finite element method and mim is the chosen
integration method:

getfem::mesh_fem mf_interpole(mfu.linked_mesh());
pfem ifem = getfem::new_interpolated_fem(mf, mim);
dal::bit_vector nn = mfu.convex_index();
mf_interpole.set_finite_element(nn, ifem);
getfem::asm_mass_matrix(SM1, mim, mfu, mf_interpole);
del_interpolated_fem(ifem);

The object pointed by ifem contains all the information concerning the interpolation. It could use a lot
of memory. As pfem is a shared_ptr, the interpolated fem will be automatically destroyed when the last
pointer on it is destroyed. To obtain a better accuracy, it is better to refine the integration method (with
IM_STRUCTURED_COMPOSITE for instance) rather than increase its order.

89

User Documentation, Release 5.4.2

18.1 mixed methods with different meshes

Instead of using the previous tools (interpolated and projected fems), it is possible to use a finite element
variable defined on an another mesh than the one on which an assembly is computed using the “inter-
polate transformation” tool of GWFL (the generic weak form language, see Interpolate transformations
), the finite element variables will be interpolated on each Gauss point. There is no restriction on the
dimensions of the mesh used, which means in particular that a two-dimensional fem variable can be in-
terpolated on a one-dimensional mesh (allowing the coupling of shell and beam elements, for instance).
It is also possible to use some transformations like polar coordinates to euclidean ones.

18.2 mortar methods

Mortar methods are supported by GetFEM. The coupling term between non matching meshes can in par-
ticular be computed using the interpolate transformations of GWFL (see Interpolate transformations).

90 Chapter 18. Interpolation/projection of a finite element method on non-matching
meshes

CHAPTER 19

Compute 𝐿2 and 𝐻1 norms

The file getfem/getfem_assembling.h defines the functions to compute 𝐿2 and 𝐻1 norms of a
solution. The following functions compute the different norms:

getfem::asm_L2_norm(mim, mf, U, region = mesh_region::all_convexes());
getfem::asm_H1_semi_norm(mim, mf, U, region = mesh_region::all_convexes());
getfem::asm_H1_norm(mim, mf, U, region = mesh_region::all_convexes());

where mim is a getfem::mesh_im used for the integration, mf is a getfem::mesh_fem and
describes the finite element method on which the solution is defined, U is the vector of values of the
solution on each degree of freedom of mf and region is an optional parameter which specify the mesh
region on which the norm is computed. The size of U should be mf.nb_dof().

In order to compare two solutions, it is often simpler and faster to use the following function than to
interpolate one mesh_fem on another:

getfem::asm_L2_dist(mim, mf1, U1, mf2, U2, region = mesh_region::all_
→˓convexes());
getfem::asm_H1_dist(mim, mf1, U1, mf2, U2, region = mesh_region::all_
→˓convexes());

These functions return the 𝐿2 and 𝐻1 norms of 𝑢1 − 𝑢2.

91

User Documentation, Release 5.4.2

92 Chapter 19. Compute 𝐿2 and 𝐻1 norms

CHAPTER 20

Compute derivatives

The file getfem/getfem_derivatives.h defines the following function to compute the gradient
of a solution:

getfem::compute_gradient(mf1, mf2, U, V);

where mf1 is a variable of type mesh_fem and describes the finite element method on which the solution
is defined, mf2 describes the finite element method to compute the gradient, U is a vector representing
the solution and should be of size mf1.nb_dof(), V is the vector on which the gradient will be
computed and should be of size N * mf2.nb_dof(), with N the dimension of the domain.

93

User Documentation, Release 5.4.2

94 Chapter 20. Compute derivatives

CHAPTER 21

Export and view a solution

There are essentially four ways to view the result of getfem computations:

• Scilab, Octave or Matlab, with the interface.

• The open-source Paraview, Mayavi2, PyVista or any other VTK/VTU file viewer.

• The open-source OpenDX program.

• The open-source Gmsh program.

The objects that can be exported are, mesh, mesh_fem objects, and stored_mesh_slice.

21.1 Saving mesh and mesh_fem objects for the Matlab interface

If you have installed the Scilab, Octave or Matlab interface, you can simply use
mesh_fem::write_to_file and save the solution as a plain text file, and then, load them
with the interface. For example, supposing you have a solution U on a mesh_fem mf,:

std::fstream f("solution.U",std::ios::out);
for (unsigned i=0; i < gmm::vect_size(U); ++i)

f << U[i] << "\verb+\+n";

// when the 2nd arg is true, the mesh is saved with the |mf|
mf.write_to_file("solution.mf", true);

and then, under Scilab, Octave or Matlab:

>> U=load('solution.U');
>> mf=gfMeshFem('load','solution.mf');
>> gf_plot(mf,U,'mesh','on');

See the getfem-matlab interface documentation for more details.

Four file formats are supported for export: the VTK and VTU file formats, the‘OpenDX‘_ file format
and the Gmsh post-processing file format. All four can be used for exporting either a getfem::mesh

95

https://vtk.org/Wiki/VTK_XML_Formats
https://vtk.org/Wiki/VTK_XML_Formats
http://www.geuz.org/gmsh

User Documentation, Release 5.4.2

or getfem::mesh_fem, and all except VTU can be used for exporting the more versatile
getfem::stored_mesh_slice. The corresponding four classes: getfem::vtk_export,
getfem::vtu_export, getfem::dx_export and getfem::pos_export are contained in
the file getfem/getfem_export.h.

Examples of use can be found in the examples of the tests directory.

21.2 Producing mesh slices

GetFEM provides “slicers” objects which are dedicated to generating post-treatment data from meshes
and solutions. These slicers, defined in the file getfem/getfem_mesh_slicers.h take a mesh
(and sometimes a mesh_fem with a solution field) on input, and produce a set of simplices after ap-
plying some operations such as intersection with a plane, extraction of the mesh boundary, refine-
ment of each convex, extraction of isosurfaces, etc. The output of these slicers can be stored in a
getfem::stored_mesh_slice object (see the file getfem/getfem_mesh_slice.h). A
stored_mesh_slice object may be considered as a P1 discontinuous FEM on a non-conformal mesh
with fast interpolation ability. Slices are made of segments, triangles and tetrahedrons, so the convexes
of the original mesh are always simplexified.

All slicer operation inherit from getfem::slicer_action, it is very easy to create a new slicer.
Example of slicers are (some of them use a getfem::mesh_slice_cv_dof_data_base which
is just a reference to a mesh_fem mf and a field U on this mesh_fem).

getfem::slicer_none()
empty slicer.

getfem::slicer_boundary(const mesh &m, ldots)
extract the boundary of a mesh.

getfem::slicer_apply_deformation(mesh_slice_cv_dof_data_base&)
apply a deformation to the mesh , the deformation field is defined on a mesh_fem.

getfem::slicer_half_space(base_node x0, base_node n, int orient)
cut the mesh with a half space (if orient = -1 or +1), or a plane (if orient = 0), x0 being a
node of the plane, and n being a normal of the plane.

getfem::slicer_sphere(base_node x0, scalar_type R, int orient)
cut with the interior (orient``=-1), boundary (``orient``=0) or exterior
(``orient``=+1) or a sphere of center ``x0 and radius R.

getfem::slicer_cylinder(base_node x0, base_node x1, scalar_type R, int orient)
slice with the interior/boundary/exterior of a cylinder of axis (x0,x1) and radius R.

getfem::slicer_isovalues(const mesh_slice_cv_dof_data_base &mfU, scalar_type
val, int orient)

cut with the isosurface defined by the scalar field mfU and val. Keep only simplices where
:𝑢(𝑥) < 𝑣𝑎𝑙 (orient``=-1), :math:`u(x)=val` (``orient=0 or 𝑢(𝑥) > 𝑣𝑎𝑙.

getfem::slicer_mesh_with_mesh(const mesh &m2)
cut the convexes with the convexes of the mesh m2.

getfem::slicer_union(const slicer_action &sA, const slicer_action &sB)
merges the output of two slicer operations.

getfem::slicer_intersect(slicer_action &sA, slicer_action &sB)
intersect the output of two slicer operations.

96 Chapter 21. Export and view a solution

https://vtk.org/Wiki/VTK_XML_Formats

User Documentation, Release 5.4.2

getfem::slicer_complementary(slicer_action &s)
return the complementary of a slicer operation.

getfem::slicer_build_edges_mesh(mesh &edges_m)
slicer whose side-effect is to build the mesh edges_m with the edges of the sliced mesh.

getfem::slicer_build_mesh(mesh &m)
in some (rare) occasions , it might be useful to build a mesh from a slice. Note however that there
is absolutely no guaranty that the mesh will be conformal (although it is often the case).

getfem::slicer_build_stored_mesh_slice(stored_mesh_slice &sl)
record the output of the slicing operation into a stored_mesh_slice object. Note that it is of-
ten more convenient to use the stored_mesh_slice::build(...) method to achieve the
same result.

getfem::slicer_explode(c)
shrink or expand each convex with respect to its gravity center.

In order to apply these slicers, a getfem::mesh_slicer(mesh&) ob-
ject should be created, and the getfem::slicer_action are then
stacked with mesh_slicer::push_back_action(slicer_action&) and
mesh_slicer::push_front_action(slicer_action&). The slicing operation is fi-
nally executed with mesh_slicer::exec(int nrefine) (or mesh_slicer::exec(int
nrefine, const mesh_region &cvlst) to apply the operation to a subset of the mesh, or its
boundary etc.).

The nrefine parameter is very important, as the “precision” of the final result will depend on it: if
the data that is represented on the final slice is just P1 data on convexes with a linear geometric trans-
formation, nrefine = 1 is the right choice, but for P2, P3, non linear transformation etc, it is better
to refine each convex of the original mesh during the slicing operation. This allows an accurate repre-
sentation of any finite element field onto a very simple structure (linear segment/triangles/tetrahedrons
with P1 discontinuous data on them) which is what most visualization programs (gmsh, mayavi, opendx,
scilab, octave, matlab, etc.) expect.

Example of use (cut the boundary of a mesh m with a half-space, and save the result into a
stored_mesh_slice):

getfem::slicer_boundary a0(m);
getfem::slicer_half_space a1(base_node(0,0), base_node(1, 0), -1);
getfem::stored_mesh_slice sl;
getfem::slicer_build_stored_mesh_slice a2(sl);
getfem::mesh_slicer slicer(m);
slicer.push_back_action(a1);
slicer.push_back_action(a2);
int nrefine = 3;
slicer.exec(nrefine);

In order to build a getfem::stored_mesh_slice object during the slicing operation, the
stored_mesh_slice::build() method is often more convenient than using explicitly the
slicer_build_stored_mesh_slice slicer:

getfem::stored_mesh_slice sl;
sl.build(m, getfem::slicer_boundary(m),

getfem::slicer_half_space(base_node(0,0), base_node(1, 0), -1),
nrefine);

The simplest way to use these slices is to export them to VTK, OpenDX, or Gmsh.

21.2. Producing mesh slices 97

User Documentation, Release 5.4.2

21.3 Exporting mesh, mesh_fem or slices to VTK/VTU

VTK/VTU files can handle data on segment, triangles, quadrangles, tetrahedrons and hexahedrons of
first or second degree.

For example, supposing that a stored_mesh_slice sl has already been built:

// an optional the 2nd argument can be set to true to produce
// a text file instead of a binary file
vtk_export exp("output.vtk");
exp.exporting(sl); // will save the geometrical structure of the slice
exp.write_point_data(mfp, P, "pressure"); // write a scalar field
exp.write_point_data(mfu, U, "displacement"); // write a vector field

In this example, the fields P and U are interpolated on the slice nodes and then written into the VTK
field.

It is also possible to export a mesh_fem mfu without having to build a slice:

// an optional the 2nd argument can be set to true to produce
// a text file instead of a binary file
vtk_export exp("output.vtk");
exp.exporting(mfu);
exp.write_point_data(mfp, P, "pressure"); // write a scalar field
exp.write_point_data(mfu, U, "displacement"); // write a vector field

An mesh_fem mfu can also be exported in the VTU format with:

vtu_export exp("output.vtu);
exp.exporting(mfu); // will save the geometrical structure of the mesh_fem
exp.write_point_data(mfp, P, "pressure"); // write a scalar field
exp.write_point_data(mfu, U, "displacement"); // write a vector field

Note however that when exporing a mesh_fem with vtk_export or vtu_export each convex/fem
of mfu will be mapped to a VTK/VTU element type. As VTK/VTU does not handle elements of degree
greater than 2, there will be a loss of precision for higher degree FEMs.

21.4 Exporting mesh, mesh_fem or slices to OpenDX

The OpenDX data file is more versatile than the VTK one. It is able to store more that one mesh, any
number of fields on these meshes etc. However, it does only handle elements of degree 1 and 0 (seg-
ments, triangles, tetrahedrons, quadrangles etc.). And each mesh can only be made of one type of ele-
ment, it cannot mix triangles and quadrangles in a same object. For that reason, it is generally preferable
to export getfem::stored_mesh_slice objects (in which non simplex elements are simplexified,
and which allows refinement of elements) than getfem::mesh_fem and getfem::mesh objects.

The basic usage is very similar to getfem::vtk_export:

getfem::dx_export exp("output.dx");
exp.exporting(sl);
exp.write_point_data(mfu, U, "displacement");

Moreover, getfem::dx_export is able to reopen a ‘.dx’ file and append new data into it. Hence
it is possible, if many time-steps are to be saved, to view intermediate results in OpenDX during the

98 Chapter 21. Export and view a solution

User Documentation, Release 5.4.2

computations. The prototype of the constructor is:

dx_export(const std::string& filename, bool ascii = false, bool append =
→˓false);
dx_export(std::ostream &os_, bool ascii = false);

An example of use, with multiple time steps (taken from tests/dynamic_friction.cc):

getfem::stored_mesh_slice sl;
getfem::dx_export exp("output.dx", false);
if (N <= 2) sl.build(mesh, getfem::slicer_none(),4);
else sl.build(mesh, getfem::slicer_boundary(mesh),4);
exp.exporting(sl,true);

// for each mesh object, a corresponding ``mesh'' object will be
// created in the data file for the edges of the original mesh
exp.exporting_mesh_edges();

while (t <= T) {
...
exp.write_point_data(mf_u, U0);
exp.serie_add_object("deformation");
exp.write_point_data(mf_vm, VM);
exp.serie_add_object("von_mises_stress");

}

In this example, an OpenDX “time series” is created, for each time step, two data fields are saved: a
vector field called “deformation”, and a scalar field called “von_mises_stress”.

Note also that the dx_export::exporting_mesh_edges() function has been called. It implies
that for each mesh exported, the edges of the original mesh are also exported (into another OpenDX
mesh). In this example, you have access in OpenDX to 4 data fields: “deformation”, “deforma-
tion_edges”, “von_mises_stress” and “von_mises_stress_edges”.

The tests/dynamic_friction.net is an example of OpenDX program for these data (run it
with cd tests; dx -edit dynamic_friction.net , menu “Execute/sequencer”).

21.4. Exporting mesh, mesh_fem or slices to OpenDX 99

User Documentation, Release 5.4.2

100 Chapter 21. Export and view a solution

CHAPTER 22

A pure convection method

A method to compute a pure convection is defined in the file getfem/getfem_convect.h. The
call of the function is:

getfem::convect(mf, U, mf_v, V, dt, nt, option = CONVECT_EXTRAPOLATION);

where mf is a variable of type getfem::mesh_fem, U is a vector which represent the field to be
convected, mf_v is a getfem::mesh_fem for the velocity field, V is the dof vector for the velocity
field, dt is the pseudo time of convection and nt the number of iterations for the computation of
characteristics. option is an option for the boundary condition where there is a re-entrant convection.
The possibilities are getfem::CONVECT_EXTRAPOLATION (extrapolation of the field on the nearest
element) or getfem::CONVECT_UNCHANGED (no change of the value on the boundary).

The method integrate the partial differential equation

𝜕𝑈

𝜕𝑡
+ 𝑉 · ∇𝑈 = 0,

on the time intervall [0, 𝑑𝑡].

The method used is of Galerkin-Characteristic kind. It is a very simple version which is inconditionnally
stable but rather dissipative. See [ZT1989] and also the Freefem++ documentation on convect command.

The defined method works only if mf is a pure Lagrange finite element method for the moment. The
principle is to convect backward the finite element nodes by solving the ordinary differential equation:

𝑑𝑋

𝑑𝑡
= −𝑉 (𝑋),

with an initial condition corresponding to each node. This convection is made with nt steps. Then the
solution is interploated on the convected nodes.

In order to make the extrapolation not too expensive, the product 𝑑𝑡× 𝑉 should not be too large.

Note that this method can be used to solve convection dominant problems coupling it with a splitting
scheme.

101

User Documentation, Release 5.4.2

102 Chapter 22. A pure convection method

CHAPTER 23

The model description and basic model bricks

The model description of GetFEM allows to quickly build some fem applications on complex linear or
nonlinear PDE coupled models. The principle is to propose predefined bricks which can be assembled to
describe a complex situation. A brick can describe either an equation (Poisson equation, linear elasticity
. . .) or a boundary condition (Dirichlet, Neumann . . .) or any relation between two variables. Once
a brick is written, it is possible to use it in very different situations. This allows a reusability of the
produced code and the possibility of a growing library of bricks. An effort has been made in order to
facilitate as much as possible the definition of a new brick. A brick is mainly defined by its contribution
in the tangent linear system to be solved.

This model description is an evolution of the model bricks of previous versions of GetFEM. Compared
to the old system, it is more flexible, more general, allows the coupling of model (multiphysics) in a
easier way and facilitates the writing of new components. It also facilitate the write of time integration
schemes for evolving PDEs.

The kernel of the model description is contained in the file getfem/getfem_models.h. The two
main objects are the model and the brick.

23.1 The model object

The aim of the model object, defined in file getfem/getfem_models.h, is to globally describe a
PDE model. It mainly contains two lists: a list of variables (related or not to the mesh_fem objects) and
data (also related or not to the mesh_fem objects) and a list of bricks. The role of the model object is to
coordinate the module and make them produce a linear system of equations. If the model is linear, this
will simply be the linear system of equation on the corresponding dofs. If the model is nonlinear, this
will be the tangent linear system. There are two versions of the model object: a real one and complex
one.

The declaration of a model object is done by:

getfem::model md(complex_version = false);

103

User Documentation, Release 5.4.2

The parameter of the constructor is a boolean which determines whether the model deals with complex
number or real numbers. The default is false for a model dealing with real numbers.

Fig. 1: The (tangent) linear system

There are different kinds of variables/data in the model. The variables are the unknown of the model.
They will be (generally) computed by solving the (tangent) linear system built by the model. Generally,
the model will have several variables. Each variable has a certain size (number of degrees of freedom)
and the different variables are sorted in alphanumeric order to form the global unknown (𝑈 in Fig. The
(tangent) linear system). Each variable will be associated to an interval 𝐼 = [𝑛1, 𝑛2] which will represent
the degrees of freedom indices corresponding to this variable in the global system. The model stores
also some data (in the same format as the variables). The difference between data and variables is that
data is not an unknown of the model. The value of the data should be provided. In some cases (nonlinear
models) some variables can be considered as some data for certain terms. Variables and data are of two
kinds. They can have a fixed size, or they can depend on a finite element method (be the d.o.f. of a finite
element method).

For instance, in the situation described in Fig. The (tangent) linear system, there are four variables in the
model, namely 𝑋,𝑌, 𝑉 and 𝑊 . The role of the model object will be to assemble the linear system, i.e.
to fill the sub matrices corresponding to each variable (𝑅𝑋,𝑋 , 𝑅𝑌,𝑌 , 𝑅𝑉,𝑉 , and 𝑅𝑊,𝑊) and the coupling
terms between two variables (𝑅𝑋,𝑌 , 𝑅𝑋,𝑉 , 𝑅𝑊,𝑉 , · · ·). This different contributions will be given by the
different bricks added to the model.

The main useful methods on a model object are

getfem::model::is_complex()
A boolean which says if the model deals with real or complex unknowns and data.

104 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

getfem::model::add_fixed_size_variable(name, size, niter = 1)
Add a variable of fixed size. name is a string which designate the variable. niter is the number
of copy of the variable.

getfem::model::add_fixed_size_variable(name, sizes, niter = 1)
Add a variable of fixed size. name is a string which designate the variable. sizes is a vector of
dimension for matrix or tensor fixed size variables. niter is the number of copy of the variable.

getfem::model::add_fixed_size_data(name, size, niter = 1)
Add a data of fixed size. name is a string which designate the data. niter is the number of copy
of the data.

getfem::model::add_fixed_size_data(name, sizes, niter = 1)
Add a data of fixed size. name is a string which designate the data. sizes is a vector of
dimension for matrix or tensor fixed size variables. niter is the number of copy of the data.

getfem::model::add_initialized_fixed_size_data(name, V)
Add a data of fixed size initialized with the given vector V. name is a string which designate the
data.

getfem::model::add_initialized_scalar_data(name, e)
Add a data of size 1 initialized with the given scalar value e. name is a string which designate the
data.

getfem::model::add_fem_variable(name, mf, niter = 1)
Add a variable being the dofs of a finite element method mf. name is a string which designate
the variable. niter is the number of copy of the variable.

getfem::model::add_filtered_fem_variable(name, mf, region)
Add a variable being the dofs of a finite element method mf only specific to a given region. (The
standard way to define mf in GetFEM is to define in the whole domain.) name is a string which
designate the variable. region is the region number. This function will select the degree of free-
dom whose shape function is non-zero on the given region. Internally, a partial_mesh_fem
object will be used. The method mesh_fem_of_variable('name') allows to access to the
partial_mesh_fem built.

getfem::model::add_fem_data(name, mf, niter = 1)
Add a data being the dofs of a finite element method mf. name is a string which designate the
data. niter is the number of copy of the data.

getfem::model::add_initialized_fem_data(name, mf, V, niter = 1)
Add a data being the dofs of a finite element method mf initialized with the given vector V. name
is a string which designate the data. niter is the number of copy of the data.

getfem::model::add_multiplier(name, mf, primal_name, niter = 1)
Add a special variable linked to the finite element method mf and being a multiplier for certain
constraints (Dirichlet condition for instance) on a primal variable primal_name. The most
important is that the degrees of freedom will be filtered thanks to a partial_mesh_fem object
in order to retain only a set of linearly independent constraints. To ensure this, a call to the bricks
having a term linking the multiplier and the primal variable is done and a special algorithm is
called to extract independent constraints. This algorithm is optimized for boundary multipliers
(see gmm::range_basis). Use it with care for volumic multipliers. niter is the number of copy
of the variable. Note that for complex terms, only the real part is considered to filter the multiplier.

getfem::model::add_im_variable(name, imd)
Add a variable defined on the integration points of the im_data object imd. The variable can be
scalar-valued, vector-valued or tensor-valued depending on the dimension of imd. It increases the

23.1. The model object 105

User Documentation, Release 5.4.2

model degrees of freedom by the number of integration points time the size of the variable at one
integration point.

getfem::model::add_internal_im_variable(name, imd)
Add a variable defined on the integration points of the im_data object imd that will be statically
condensed out during the linearization of the problem. The variable can be scalar-valued, vector-
valued or tensor-valued depending on the dimension of imd. It does not add degrees of freedom
to the model.

getfem::model::add_im_data(name, imd)
Add a data object deignated with the string name, defined at all integration points of the im_data
object imd. The data can be scalar-valued, vector-valued or tensor-valued depending on the di-
mension of imd.

getfem::model::real_variable(name, niter = 1)
Gives the access to the vector value of a variable or data. Real version.

getfem::model::complex_variable(name, niter = 1)
Gives the access to the vector value of a variable or data. Complex version.

getfem::model::mesh_fem_of_variable(name)
Gives a reference on the mesh_fem on which the variable is defined. Throw an exception if this is
not a fem variable.

getfem::model::real_tangent_matrix()
Gives the access to tangent matrix. Real version. A computation of the tangent system have to be
done first.

getfem::model::complex_tangent_matrix()
Gives the access to tangent matrix. Complex version. A computation of the tangent system have
to be done first.

getfem::model::real_rhs()
Gives the access to right hand side vector of the linear system. real version. A computation of the
tangent system have to be done first.

getfem::model::complex_rhs()
Gives the access to right hand side vector of the linear system. Complex version. A computation
of the tangent system have to be done first.

23.2 The brick object

A model brick is an object that is supposed to represent a part of a model. It aims to represent some
integral terms in a weak formulation of a PDE model. The model object will contain a list of bricks.
All the terms described by the brick will be finally assembled to build the linear system to be solved
(the tangent linear system for a nonlinear problem). For instance if a term Δ𝑢 is present on the pde
model (Laplacian of 𝑢) then the weak formulation will contain the term

∫︀
Ω∇𝑢 · ∇𝑣 𝑑𝑥, where 𝑣 is

the test function corresponding to 𝑢. Then the role of the corresponding brick is to assemble the term∫︀
Ω∇𝜙𝑖·∇𝜙𝑗 𝑑𝑥, where𝜙𝑖 and𝜙𝑗 are the shape functions of the finite element method describing 𝑢. This

term will be added by the model object to the global linear system on a diagonal block corresponding to
the variable 𝑢. The only role of the brick is thus to call the corresponding assembly procedure when the
model object asks for it. The construction of a brick for such a linear term is thus very simple.

Basically, the brick object will derive from the object virtual_brick defined in getfem/
getfem_models.h and should redefine the method asm_real_tangent_terms or

106 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

asm_complex_tangent_terms depending on whether it is a real term or an intrinsic com-
plex term.

23.3 How to build a new brick

Note first that the design of a new brick is only necessary for special terms not covered by existing bricks
and not covered by the wide range of accessible terms (including complex coupling terms) of the generic
assembly brick (see Generic assembly bricks).

According to the spirit in which the brick has been designed, a brick should avoid as much as possible
to store additional data. The parameters of a brick should be contained in the variable and data of
the model. For instance, the parameters of a linear elasticity brick are the elasticity coefficient. This
coefficients have to be some data of the model. When the brick is called by the model object, a list of
variables and data is given to the brick. The great majority of the predefined bricks do not store any data.
This allows to instantiate such a bricks only once.

An example of a brick corresponding to the laplacian term is the following (other examples can be found
in the file getfem_models.cc which contains the very standard bricks):

struct my_Laplacian_brick: public getfem::virtual_brick {

void asm_real_tangent_terms(const getfem::model &md, size_type ib,
const getfem::model::varnamelist &varl,
const getfem::model::varnamelist &datal,
const getfem::model::mimlist &mims,
getfem::model::real_matlist &matl,
getfem::model::real_veclist &vecl,
getfem::model::real_veclist &vecl_sym,
size_type region, build_version nl) const {

GMM_ASSERT1(matl.size() == 1,
"My Laplacian brick has one and only one term");

GMM_ASSERT1(mims.size() == 1,
"My Laplacian brick need one and only one mesh_im");

GMM_ASSERT1(varl.size() == 1 && datal.size() == 0,
"Wrong number of variables for my Laplacian brick");

const getfem::mesh_fem &mf_u = md.mesh_fem_of_variable(varl[0]);
const getfem::mesh_im &mim = *mims[0];

gmm::clear(matl[0]);
getfem::asm_stiffness_matrix_for_homogeneous_laplacian
(matl[0], mim, mf_u, region);

}

my_Laplacian_brick(void)
{ set_flags("My Laplacian brick", true /* linear */,

true /* symmetric */,
true /* coercivity */,
true /* real version defined */,
false /* no complex version*/);

}
};

The constructor of a brick should call the method set_flags. The first parameter of this method is a
name for the brick (this allows to list the bricks of a model and facilitate their identification). The other

23.3. How to build a new brick 107

User Documentation, Release 5.4.2

parameters are some flags, respectively:

• if the brick terms are all linear or not.

• if the brick terms are globally symmetric (conjugated in the complex version) or at least do not
affect the symmetry. The terms corresponding to two different variables and declared symmetric
are added twice in the global linear system (the term and the transpose of the term).

• if the terms do not affect the coercivity.

• if the terms have a real version or not. If yes, the method asm_real_tangent_terms should
be redefined.

• if the terms have a complex version or not. If yes, the method
asm_complex_tangent_terms should be redefined.

The method asm_real_tangent_terms will be called by the model object for the assembly of
the tangent system. The model object gives the whole framework to the brick to build its terms. The
parameter md of the asm_real_tangent_terms method is the model that called the brick, ib
being the brick number in the model. The parameter varl is an array of variable/data names defined
in this model and needed in the brick. mims is an array of mesh_im pointers. It corresponds to the
integration methods needed to assemble the terms. matl is an array of matrices to be computed. vecl
is an array of vectors to be computed (rhs or residual vectors). vecl_sym is an array of vectors to be
computed only for symmetric terms and corresponding to the rhs of the second variable. A brick can
have an arbitrary number of terms. For each term, at least the corresponding matrix or the corresponding
vector has to be filled (or both the two, but only in the nonlinear case, see the description of the terms
below, next section). region is a mesh region number indicated that the terms have to be assembled
on a certain region. nl is for nonlinear bricks only. It says if the tangent matrix or the residual or both
the two are to be computed (for linear bricks, all is to be computed at each call).

For the very simple Laplacian brick defined above, only one variable is used and no data and there is
only one term. The lines:

GMM_ASSERT1(matl.size() == 1,
"My Laplacian brick has one and only one term");

GMM_ASSERT1(mims.size() == 1,
"My Laplacian brick need one and only one mesh_im");

GMM_ASSERT1(varl.size() == 1 && datal.size() == 0,
"Wrong number of variables for my Laplacian brick");

are not mandatory and just verify that the good number of terms (1), integration methods (1), vari-
ables(1), data(0) are passed to the asm_real_tangent_terms method.

The lines:

const getfem::mesh_fem &mf_u = md.mesh_fem_of_variable(varl[0]);
const getfem::mesh_im &mim = *mims[0];

takes the mesh_fem object from the variable on which the Laplacian term will be added and the mesh_im
object in the list of integrations methods. Finally, the lines:

gmm::clear(matl[0]);
getfem::asm_stiffness_matrix_for_homogeneous_laplacian
(matl[0], mim, mf_u, region);

call a standard assembly procedure for the Laplacian term defined in the file getfem/
getfem_assembling.h. The clear method is necessary because although it is guaran-

108 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

teed that the matrices in matl have good sizes they maybe not cleared before the call of
asm_real_tangent_terms.

Note that this simple brick has only one term and is linear. In the case of a linear brick, either the matrix
or the right hand side vector have to be filled but not both the two. Depending on the declaration of the
term. See below the integration of the brick to the model.

Let us see now a second example of a simple brick which prescribes a Dirichlet condition thanks to the
use of a Lagrange multiplier. The Dirichlet condition is of the form

𝑢 = 𝑢𝐷 on Γ,

where 𝑢 is the variable, 𝑢𝐷 is a given value and Γ is a part on the boundary of the considered domain.
The weak terms corresponding to this condition prescribed with a Lagrange multiplier are∫︁

Γ
𝑢𝜇 𝑑Γ =

∫︁
Γ
𝑢𝐷𝜇 𝑑Γ,∀𝜇 ∈𝑀,

where 𝑀 is an appropriate multiplier space. The contributions to the global linear system can be viewed
in Fig. Contributions of the simple Dirichlet brick. The matrix 𝐵 is the “mass matrix” between the finite
element space of the variable 𝑢 and the finite element space of the multiplier 𝜇. 𝐿𝑢 is the right hand side
corresponding to the data 𝑢𝐷.

Fig. 2: Contributions of the simple Dirichlet brick

The brick can be defined as follows:

struct my_Dirichlet_brick: public getfem::virtual_brick {

void asm_real_tangent_terms(const getfem::model &md, size_type ib,
const getfem::model::varnamelist &varl,
const getfem::model::varnamelist &datal,
const getfem::model::mimlist &mims,
getfem::model::real_matlist &matl,
getfem::model::real_veclist &vecl,
getfem::model::real_veclist &vecl_sym,
size_type region, build_version nl) const {

GMM_ASSERT1(matl.size() == 1,
"My Dirichlet brick has one and only one term");

GMM_ASSERT1(mims.size() == 1,
"My Dirichlet brick need one and only one mesh_im");

GMM_ASSERT1(varl.size() == 2 && datal.size() == 1,
"Wrong number of variables for my Laplacian brick");

(continues on next page)

23.3. How to build a new brick 109

User Documentation, Release 5.4.2

(continued from previous page)

const getfem::mesh_fem &mf_u = md.mesh_fem_of_variable(varl[0]);
const getfem::mesh_fem &mf_mult = md.mesh_fem_of_variable(varl[1]);
const getfem::mesh_im &mim = *mims[0];
const getfem::model_real_plain_vector &A = md.real_

→˓variable(datal[ind]);
const getfem::mesh_fem *mf_data = md.pmesh_fem_of_variable(datal[ind]);

if (mf_data)
getfem::asm_source_term(vecl[0], mim, mf_mult, *mf_data, A, region);

else
getfem::asm_homogeneous_source_term(vecl[0], mim, mf_mult, A,

→˓region);

gmm::clear(matl[0]);
getfem::asm_mass_matrix(matl[0], mim, mf_mult, mf_u, region);

}

my_Dirichlet_brick(void)
{ set_flags("My Dirichlet brick", true /* linear */,

true /* symmetric */,
false /* coercivity */,
true /* real version defined */,
false /* no complex version */);

}
};

This brick has again only one term but defines both the matrix and the right hand side parts. Two
variables are concerned, the primal variable on which the Dirichlet condition is prescribed, and the
multiplier variable which should be defined on a mesh region corresponding to a boundary (it should
be added to the model with the method add_multiplier). The term of the brick will be declared
symmetric (see the next section).

The lines:

const getfem::model_real_plain_vector &A = md.real_variable(datal[ind]);
const getfem::mesh_fem *mf_data = md.pmesh_fem_of_variable(datal[ind]);

allow to have the access to the value of the data corresponding to the right hand side of the Dirichlet
condition and to the mesh_fem on which this data is defined. If the data is constant (not described on a
fem) then mf_data is a null pointer.

The lines:

if (mf_data)
getfem::asm_source_term(vecl[0], mim, mf_mult, *mf_data, A, region);

else
getfem::asm_homogeneous_source_term(vecl[0], mim, mf_mult, A, region);

make the assembly of the right hand side. The two versions correspond to a data defined on a finite
element method or constant size data.

(+ some example with a nonlinear term . . .)

110 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

23.4 How to add the brick to a model

In order to add a brick to a model, a certain information have to be passed to the model:

• A pointer to the brick itself.

• The set of variable names concerned with the terms of the brick.

• The set of data names concerned with the terms of the brick.

• A list of terms description.

• A list of integration methods.

• Eventually the concerned mesh region.

This is done by the call of the model object method:

md.add_brick(pbr, const getfem::model::varnamelist &varnames,
const getfem::model::varnamelist &datanames,
const getfem::model::termlist &terms,
const getfem::model::mimlist &mims,
size_t region);

The method returns the index of the brick in the model. The call of this method is rather complex
because it can be adapted to many situations. The construction of a new brick should be accompagned
to the definition of a function that adds the new brick to the model calling this method and more simple
to use.

For instance, for the simple Laplacian brick described above, this function can be defined as folows:

size_t add_my_Laplacian_brick(getfem::model &md, const getfem::mesh_im &
→˓mim,

const std::string &varname,
size_t region = size_t(-1)) {

getfem::pbrick pbr = std::make_shared<my_Laplacian_brick>();
getfem::model::termlist tl;

tl.push_back(getfem::model::term_description(varname, varname, true));
return md.add_brick(pbr, getfem::model::varnamelist(1, varname),

getfem::model::varnamelist(), tl,
getfem::model::mimlist(1, &mim), region);

}

This function will be called by the user of your brick. The type getfem::model::varnamelist
is a std::vector<std::string> and represent an array of variable names. The type
getfem::model::mimlist is a std::vector<const getfem::mesh_im *> and repre-
sent an array of pointers to integration methods. The type getfem::model::termlist is an array
of terms description. There is two kind of terms. The terms adding only a right hand side to the linear
(tangent) system which have to be added to the list by:

tl.push_back(getfem::model::term_description(varname));

and the terms having a contribution to the matrix of the linear system which have to be added to the list
by:

tl.push_back(getfem::model::term_description(varname1, varname2, true/
→˓false));

23.4. How to add the brick to a model 111

User Documentation, Release 5.4.2

In this case, the matrix term is added in the rows corresponding to the variable varname1 and the
columns corresponding to the variable varname2. The boolean being the third parameter is to de-
clare whether the term is symmetric or not. If it is symmetric and if the two variables are different
then the assembly procedure adds the corresponding term AND its transpose. The number of terms
is arbitrary. For each term declared, the brick has to fill the corresponding right hand side vector (pa-
rameter vecl of asm_real_tangent_terms above) or/and the matrix term (parameter matl of
asm_real_tangent_terms) depending on the declaration of the term. Note that for nonlinear
bricks, both the matrix and the right hand side vectors have to be filled. For linear bricks, if the right
hand side is filled for a term declared to be a matrix term, it is IGNORED.

The variable names and the data names are given in two separate arrays because the dependence of the
brick is not the same in both cases. A linear term has to be recomputed if the value of a data is changed
but not if the value of a variable is changed.

The function allowing to add the simple Dirichlet brick described above can be defined as follows:

size_t add_my_Dirichlet_condition_brick(model &md, const mesh_im &mim,
const std::string &varname,
const std::string &multname,
size_t region,
const std::string &dataname) {

pbrick pbr = std::make_shared<my_Dirichlet_brick>();
model::termlist tl;
tl.push_back(model::term_description(multname, varname, true));
model::varnamelist vl(1, varname);
vl.push_back(multname);
model::varnamelist dl;
if (dataname.size()) dl.push_back(dataname);
return md.add_brick(pbr, vl, dl, tl, model::mimlist(1, &mim), region);

}

Again, here, the term is declared symmetric and then the matrix term and its transpose will be added.

23.5 Generic assembly bricks

A mean to add a term either on one variable or on several ones is to directly use GWFL, the generic weak
form language described in Section Compute arbitrary terms - high-level generic assembly procedures
- Generic Weak-Form Language (GWFL). The more general way is to use:

size_type getfem::add_nonlinear_term(md, mim, expr,
region = -1, is_sym = false, is_coercive = false);

This adds a brick to the model md, using the integration method mim, the assembly string expr on the
mesh region region. If the result is symmetric, you can specify it on the 5th argument and if it is
coercive on the 6th argument. The latter indications of symmetry and coercivness are used to determine
the right linear solver. If you are not so sure, it is preferable not to indicate anything.

However, this brick consider that the expression is nonlinear. This brick is especially indicated to obtain
nonlinear coupled terms between several variables. This means in particular that the assembly of the
term is performed at each call of the assembly of the model and that a Newton algorithm will be used to
solve the problem. If the term is indeed linear, you should use instead:

size_type getfem::add_linear_term(md, mim, expr,
region = -1, is_sym = false, is_coercive = false);

112 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

with the same arguments. Conversely, this brick alway assume that the term corresponding to expr is
linear and the assembly will be performed only once if the data used do not change. Thus, you have to
care that your expression is indeed linear (affine in fact) with respect to each variable. Otherwise, the
result is of course not guaranted. Source terms in the expression are taken into account. Still for linear
problem, it is possible to perform the assembly of a sole source term thanks to:

size_type getfem::add_source_term(md, mim, expr, region = -1);

with again the same arguments except the symmetry and coercivness. This brick performs the assembly
of the corresponding order 1 term (residual vector) and add it as a right hand side to the problem. The
assembly will be performed only once, so the term should not depend on the variables of the model (but
could depend of course on the constants).

For instance, if one wants to solve a Poisson problem on a predefined variable u of the model, one may
use the corresponding pre-defined bricks (see below) or simply use:

getfem::add_nonlinear_term(md, mim, "Grad_u.Grad_Test_u - F*Test_u", -1,
→˓true, true);

where F is a pre-defined constant of the model representing the right hand side. Of course, doing so,
Newton’s algorithms will be called. So, the more appropriate manner is to use the linear bricks as
follows:

getfem::add_linear_term(md, mim, "Grad_u.Grad_Test_u", -1, true, true);
getfem::add_source_term(md, mim, "F*Test_u");

Note that for the moment, the use of GWFL is not possible for complex valued problems.

23.6 Generic elliptic brick

This brick adds an elliptic term on a variable of a model. The shape of the elliptic term depends both on
the variable and a given coefficient. This corresponds to a term:

−div(𝑎∇𝑢),

where 𝑎 is the coefficient and 𝑢 the variable. The coefficient can be a scalar, a matrix or an order four
tensor. The variable can be vector valued or not. This means that the brick treats several different
situations. If the coefficient is a scalar or a matrix and the variable is vector valued then the term
is added componentwise. An order four tensor coefficient is allowed for vector valued variable only.
The coefficient can be constant or described on a FEM. Of course, when the coefficient is a tensor
described on a finite element method (a tensor field) the corresponding data can be a huge vector. The
components of the matrix/tensor have to be stored with the fortran order (columnwise) in the data vector
corresponding to the coefficient (compatibility with BLAS). The symmetry and coercivity of the given
matrix/tensor is not verified (but assumed).

This brick can be added to a model md thanks to two functions. The first one is:

size_type getfem::add_Laplacian_brick(md, mim, varname, region = -1);

that adds an elliptic term relatively to the variable varname of the model with a constant coefficient
equal to 1 (a Laplacian term). This corresponds to the Laplace operator. mim is the integration method
which will be used to compute the term. region is an optional region number. If it is omitted, it is

23.6. Generic elliptic brick 113

User Documentation, Release 5.4.2

assumed that the term will be computed on the whole mesh. The result of the function is the brick index
in the model.

The second function is:

size_type getfem::add_generic_elliptic_brick(md, mim, varname, dataexpr,
→˓region = -1);

It adds a term with an arbitrary coefficient given by the expression dataexpr which has to be a regular
expression of GWFL, the generic weak form language (like “1”, “sin(X[0])” or “Norm(u)” for instance)
even depending on model variables (except for the complex version where it has to be a declared data of
the model)

Note that very general equations can be obtained with this brick. For instance, linear anisotropic elastic-
ity can be obtained with a tensor data. When an order four tensor is used, the corresponding weak term
is the following ∫︁

Ω

∑︁
𝑖,𝑗,𝑘,𝑙

𝑎𝑖,𝑗,𝑘,𝑙𝜕𝑖𝑢𝑗𝜕𝑘𝑣𝑙𝑑𝑥

where 𝑎𝑖,𝑗,𝑘,𝑙 is the order four tensor and 𝜕𝑖𝑢𝑗 is the partial derivative with respect to the 𝑖𝑡ℎ variable of
the component 𝑗 of the unknown 𝑘. 𝑣 is the test function. However, for linear isotropic elasticity, a more
adapted brick is available (see below).

The brick has a working complex version.

23.7 Dirichlet condition brick

The aim of the Dirichlet condition brick is to prescribe a Dirichlet condition on a part of the boundary
of the domain for a variable of the model. This means that the value of this variable is prescribed on
the boundary. There is three versions of this brick (see also the section Nitsche’s method for dirichlet
and contact boundary conditions). The first version prescribe the Dirichlet thank to a multiplier. The
associated weak form of the term is the following:∫︁

Γ
𝑢𝜇𝑑Γ =

∫︁
Γ
𝑢𝐷𝜇𝑑Γ, ∀𝜇 ∈𝑀.

where 𝑢 is the variable, 𝑀 is the space of multipliers, 𝑢𝐷 is the variable and Γ the Dirichlet boundary.
For this version, an additional variable have to be added to represent the multiplier. It can be done
directly to the model or thanks to the functions below. There are three functions allowing to add a
Dirichlet condition prescribed with a multiplier. The first one is:

add_Dirichlet_condition_with_multipliers(md, mim, varname,
multname, region,
dataname = std::string());

adding a Dirichlet condition on varname thanks to a multiplier variable multname on the mesh region
region (which should be a boundary). The value of the variable on that boundary is described by the
data dataname which should be previously defined in the model. If the data is omitted, the Dirichlet
condition is assumed to be an homogeneous one (vanishing variable on the boundary). The data can be
constant or described on an FEM. It can also be scalar or vector valued, depending on the variable. The
variable multname should be added to the model by the method add_multiplier. The function
returns the brick index in the model. The second function is:

114 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

add_Dirichlet_condition_with_multipliers(md, mim, varname,
mf_mult, region,
dataname = std::string());

The only difference is that multname is replaced by mf_multwhich means that only the finite element
on which the multiplier will be built is given. The function adds itself the multiplier variable to the
model. The third function is very similar:

add_Dirichlet_condition_with_multipliers(md, mim, varname,
degree, region,
dataname = std::string());

The parameter mf_mult is replaced by an integer degree indicating that the multiplier will be built
on a classical finite element method of that degree.

Note, that in all the cases, when a variable is added by the method add_multiplier of the model
object, the mesh_fem will be filtered (thank to a partial_mesh_fem_object in order to retain
only the degrees of freedom having a non vanishing contribution on the considered boundary.

Finally, the variable name of the multiplier can be obtained thank to the function:

mult_varname_Dirichlet(md, ind_brick);

where ind_brick is the brick index in the model. This function has an undefined behavior if it applied
to another kind of brick.

The second version of the Dirichlet condition brick is the one with penalization. The function allowing
to add this brick is:

add_Dirichlet_condition_with_penalization(md, mim, varname,
penalization_coeff, region,
dataname = std::string(),

*mf_mult = 0);

The penalization consists in computing the mass matrix of the variable and add it multiplied by the penal-
ization coefficient to the stiffness matrix. The parameter mf_mult (a pointer to a getfem::mesh_fem
object) is optional. It allows to weaken the Dirichlet condition for locking situations. In that case, the
penalization matrix is of the form 𝐵𝑇𝐵 where 𝐵 is the “mass matrix” on the boundary between the
shape functions of the variable varname and the shape function of the multiplier space. The penalization
coefficient is added as a data of the model and can be changed thanks to the function:

change_penalization_coeff(md, ind_brick, penalisation_coeff);

The third version of the Dirichlet condition brick use a simplification of the linear system (tangent linear
system for nonlinear problems). Basically, it enforces a 1 on the diagonal components of the lines
corresponding to prescribed degrees of freedom, it completes the lines with some zeros (for symmetric
problems, it also complete the columns with some zeros) and it adapts the right-hand side accordingly.
This is a rather simple and economic way to prescribe a Dirichlet condition. However, it can only be
applied when one can identify the degrees of freedom prescribed by the the Dirichlet condition. So, it
has to be use with care with reduced finite element methods, Hermite element methods and cannot be
applied for a normal (or generalized) Dirichlet condition on vectorial problems. The function allowing
to add this brick is:

add_Dirichlet_condition_with_simplification(md, varname, region,
dataname = std::string());

23.7. Dirichlet condition brick 115

User Documentation, Release 5.4.2

If dataname is ommited, an homogeneous Dirichlet condition is applied. If dataname is given, the
constraint is that it has to be constant or described on the same finite element method as the variable
varname on which the Dirichlet condition is applied. Additionaly, If dataname is constant, it can only
be applied to Lagrange finite element methods.

23.8 Generalized Dirichlet condition brick

The generalized Dirichlet condition is a boundary condition of a vector field u of the type

𝐻𝑢 = 𝑟

where 𝐻 is a matrix field. The functions adding the corresponding bricks are similar to the ones of the
standard Dirichlet condition except that they need the supplementary parameter Hname which gives the
name of the data corresponding to 𝐻 . This data can be a matrix field described on a scalar fem or a
constant matrix.

add_generalized_Dirichlet_condition_with_multipliers(md, mim, varname,
multname, region,
dataname, Hname);

add_generalized_Dirichlet_condition_with_multipliers(md, mim, varname,
mf_mult, region,
dataname, Hname);

add_generalized_Dirichlet_condition_with_multipliers(md, mim, varname,
degree, region,
dataname, Hname);

add_generalized_Dirichlet_condition_with_penalization(md, mim, varname,
penalization_coeff, region,
dataname, Hname);

23.9 Pointwise constraints brick

The pointwise constraints brick is a Dirichlet condition like brick which allows to prescribe the value of
an unknown on given points of the domain. These points are not necessarily some vertex of the mesh or
some points corresponding to degrees of freedom of the finite element method on which the unknown is
described.

For scalar field variables, given a set of 𝑁𝑝 points 𝑥𝑖, 𝑖 = 1 · · ·𝑁𝑝, the brick allows to prescribe the
value of the variable on these points, i.e. to enforce the condition

𝑢(𝑥𝑖) = 𝑙𝑖, 𝑖 = 1 · · ·𝑁𝑝,

where 𝑢 is the scalar field and 𝑙𝑖 the value to be prescribed on the point 𝑥𝑖.

For vector field variables, given a set of 𝑁𝑝 points 𝑥𝑖, 𝑖 = 1 · · ·𝑁𝑝, the brick allows to prescribe the
value of one component of the variable on these points, i.e. to enforce the condition

𝑢(𝑥𝑖) · 𝑛𝑖 = 𝑙𝑖, 𝑖 = 1 · · ·𝑁𝑝,

116 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

where 𝑛𝑖 is the vector such that 𝑢(𝑥𝑖) · 𝑛𝑖 represent the component to be prescribed.

The brick has two versions: a penalized version and a version with multipliers. The call is the following:

add_pointwise_constraints_with_penalization(md, varname, penalisation_
→˓coeff,

dataname_pt, dataname_unitv = std::string(),
dataname_val = std::string());

add_pointwise_constraints_with_given_multipliers(md, varname, multname,
dataname_pt, dataname_unitv = std::string(),
dataname_val = std::string());

add_pointwise_constraints_with_multipliers(md, varname, dataname_pt,
dataname_unitv = std::string(), dataname_val =

→˓std::string());

respectively for the penalized version, the one with a given multiplier fixed size variable and the one
which automatically adds a multiplier variable of the right size to the model. The data dataname_pt,
dataname_unitv and dataname_val should be added first to the model. dataname_pt should be a vector
containing the coordinates of the points where to prescribed the value of the variable varname. It is
thus of size 𝑁𝑁𝑝 where 𝑁 is the dimension of the mesh. dataname_unitv is ignored for a scalar field
variable. For a vector field variable, it should contain the vector 𝑛𝑖. In that case, it size should be 𝑄𝑁𝑝

where𝑄 is the dimension of the vector field. dataname_val is optional and represent the right hand side,
it should contain the components 𝑙𝑖. The default value for 𝑙𝑖 is 0.

This brick is mainly designed to prescribe the rigid displacements for pure Neumann problems.

23.10 Source term bricks (and Neumann condition)

This brick adds a source term, i.e. a term which occurs only in the right hand side of the linear (tangent)
system build by the model. If 𝑓 denotes the value of the source term, the weak form of such a term is∫︁

Ω
𝑓𝑣 𝑑𝑥

where 𝑣 is the test function. The value 𝑓 can be constant or described on a finite element method.

It can also represent a Neumann condition if it is applied on a boundary of the domain.

The function to add a source term to a model is:

add_source_term_brick(md, mim,
varname, dataexpr, region = -1,
directdataname = std::string());

where md``is the model object, ``mim is the integration method, varname is the variable
of the model for which the source term is added, dataexpr has to be a regular expression of GWFL,
the generic weak form language (except for the complex version where it has to be a declared data
of the model). It has to be scalar or vector valued depending on the fact that the variable is scalar or
vector valued itself. region is a mesh region on which the term is added. If the region corresponds
to a boundary, the source term will represent a Neumann condition. directdataname is an optional
additional data which will directly be added to the right hand side without assembly.

The brick has a working complex version.

23.10. Source term bricks (and Neumann condition) 117

User Documentation, Release 5.4.2

A slightly different brick, especially dedicated to deal with a Neumann condition, is added by the fol-
lowing function:

add_normal_source_term_brick(md, mim,
varname, dataexpr, region);

The difference compared to the basic source term brick is that the data should be a vector field (a matrix
field if the variable varname is itself vector valued) and a scalar product with the outward unit normal
is performed on it.

23.11 Predefined solvers

Although it will be more convenient to build a specific solver for some problems, a generic solver is
available to test your models quickly. It can also be taken as an example to build your own solver. It is
defined in src/getfem/getfem_model_solvers.h and src/getfem_model_solvers.
cc and the call is:

getfem::standard_solve(md, iter);

where md is the model object and iter is an iteration object from Gmm++. See also the next section
for an example of use.

Note that SuperLU is used as a default linear solver on “small” problems. You can also link MUMPS with
GetFEM (see section Linear algebra procedures) and use the parallel version. For nonlinear problems,
A Newton method (also called Newton-Raphson method) is used.

Note also that it is possible to disable some variables (with the method md.disable_variable(varname) of
the model object) in order to solve the problem only with respect to a subset of variables (the disabled
variables are the considered as data) for instance to replace the global Newton strategy with a fixed point
one.

Let us recall that a standard initialization for the iter object is the folowwing (see Gmm++ documentation
on gmm-iter):

gmm::iteration iter(1E-7, 1, 200);

where 1E-7 is the relative tolerance for the stopping criterion, 1 is the noisy option and 200 is the
maximum number of iterations. The stopping criterion of Newton’s method is build as follows. For a
relative tolerance 𝜀, the algorithm stops when:

min
(︀
‖𝐹 (𝑢)‖1/max(𝐿, 10−25) , ‖ℎ‖1/max(‖𝑢‖1, 10−25)

)︀
< 𝜀

where 𝐹 (𝑢) is the residual vector, ‖ · ‖1 is the classical 1-norm in IRn, ℎ is the search direction given
by Newton’s algorithm, 𝐿 is the norm of an estimated external loads (coming from source term and
Dirichlet bricks) and 𝑢 is the current state of the searched variable. The maximum taken with 10−25 is
to avoid pathological cases when 𝐿 and/or 𝑢 are vanishing.

23.12 Example of a complete Poisson problem

The following example is a part of the test program tests/laplacian_with_bricks.cc. Con-
struction of the mesh and finite element methods are omitted. It is assumed that a mesh is build
and two finite element methods mf_u and mf_rhs are build on this mesh. Is is also assumed that

118 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

NEUMANN_BOUNDARY_NUM and DIRICHLET_BOUNDARY_NUM are two valid boundary indices on
that mesh. The code begins by the definition of three functions which are interpolated on mf_rhs in
order to build the data for the source term, the Neumann condition and the Dirichlet condition. Follows
the declaration of the model object, the addition of the bricks and the solving of the problem:

using bgeot::base_small_vector;
// Exact solution. Allows an interpolation for the Dirichlet condition.
scalar_type sol_u(const base_node &x) { return sin(x[0]+x[1]); }
// Right hand side. Allows an interpolation for the source term.
scalar_type sol_f(const base_node &x) { return 2*sin(x[0]+x[1]); }
// Gradient of the solution. Allows an interpolation for the Neumann term.
base_small_vector sol_grad(const base_node &x)
{ return base_small_vector(cos(x[0]+x[1]), cos(x[0]+x[1]); }

int main(void) {

// ... definition of a mesh
// ... definition of a finite element method mf_u
// ... definition of a finite element method mf_rhs
// ... definition of an integration method mim
// ... definition of boundaries NEUMANN_BOUNDARY_NUM
// and DIRICHLET_BOUNDARY_NUM

// Model object
getfem::model laplacian_model;

// Main unknown of the problem
laplacian_model.add_fem_variable("u", mf_u);

// Laplacian term on u.
getfem::add_Laplacian_brick(laplacian_model, mim, "u");

// Volumic source term.
std::vector<scalar_type> F(mf_rhs.nb_dof());
getfem::interpolation_function(mf_rhs, F, sol_f);
laplacian_model.add_initialized_fem_data("VolumicData", mf_rhs, F);
getfem::add_source_term_brick(laplacian_model, mim, "u", "VolumicData");

// Neumann condition.
gmm::resize(F, mf_rhs.nb_dof()*N);
getfem::interpolation_function(mf_rhs, F, sol_grad);
laplacian_model.add_initialized_fem_data("NeumannData", mf_rhs, F);
getfem::add_normal_source_term_brick
(laplacian_model, mim, "u", "NeumannData", NEUMANN_BOUNDARY_NUM);

// Dirichlet condition.
gmm::resize(F, mf_rhs.nb_dof());
getfem::interpolation_function(mf_rhs, F, sol_u);
laplacian_model.add_initialized_fem_data("DirichletData", mf_rhs, F);
getfem::add_Dirichlet_condition_with_multipliers
(laplacian_model, mim, "u", mf_u, DIRICHLET_BOUNDARY_NUM, "DirichletData

→˓");

gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(laplacian_model, iter);

std::vector<scalar_type> U(mf_u.nb_dof());

(continues on next page)

23.12. Example of a complete Poisson problem 119

User Documentation, Release 5.4.2

(continued from previous page)

gmm::copy(laplacian_model.real_variable("u"), U);

// ... doing something with the solution ...

return 0;
}

Note that the brick can be added in an arbitrary order.

23.13 Nitsche’s method for dirichlet and contact boundary condi-
tions

GetFEM provides a generic implementation of Nitche’s method which allows to account for Dirichlet
type or contact with friction boundary conditions in a weak sense without the use of Lagrange multipli-
ers. The method is very attractive because it transforms a Dirichlet boundary condition into a weak term
similar to a Neumann boundary condition. However, this advantage is at the cost that the implemen-
tation of Nitche’s method is model dependent, since it requires an approximation of the corresponding
Neumann term. In order to add a boundary condition with Nitsche’s method on a variable of a model,
the corresponding brick needs to have access to an approximation of the Neumann term of all partial
differential terms applied to this variable. In the following, considering a variable 𝑢, we will denote by

𝐺

the sum of all Neumann terms on this variable. Note that the Neumann term 𝐺 will often depend on
the variable 𝑢 but it may also depend on other variables of the model. This is the case for instance for
mixed formulations of incompressible elasticity. The Neumann terms depend also frequently on some
parameters of the model (elasticity coefficients . . .) but this is assumed to be contained in its expression.

For instance, if there is a Laplace term (Δ𝑢), applied on the variable 𝑢, the Neumann term will be 𝐺 =
𝜕𝑢

𝜕𝑛
where 𝑛 is the outward unit normal on the considered boundary. If 𝑢 represents the displacements of

a deformable body, the Neumann term will be 𝐺 = 𝜎(𝑢)𝑛, where 𝜎(𝑢) is the stress tensor depending on
the constitutive law. Of course, in that case 𝐺 also depends on some material parameters. If additionally
a mixed incompressibility brick is added with a variable 𝑝 denoting the pressure, the Neumann term on
𝑢 will depend on 𝑝 in the following way: 𝐺 = 𝜎(𝑢)𝑛− 𝑝𝑛

In order to allow a generic implementation in which the brick imposing Nitsche’s method will work for
every partial differential term applied to the concerned variables, each brick adding a partial differential
term to a model is required to give its expression via a GWFL (generic weak form language) expression.

These expressions are utilized in a special method of the model object:

expr = md.Neumann_term(variable, region)

which allows to automatically derive an expression for the sum of all Neumann terms, by scanning the
expressions provided by all partial differential term bricks and performing appropriate manipulations. Of
course it is required that all volumic bricks were added to the model prior to the call of this method. The
derivation of the Neumann term works only for second order partial differential equations. A generic
implementation for higher order pde would be more complicated.

120 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

23.13.1 Generic Nitsche’s method for a Dirichlet condition

Assume that the variable 𝑢 is considered and that one wants to prescribe the condition

𝐻𝑢 = 𝑔

on a part Γ𝐷 of the boundary of the considered domain. Here 𝐻 is considered equal to one in the scalar
case or can be either the identity matrix in the vectorial case either a singular matrix having only 1 or 0
as eigenvalues. This allow here to prescribe only the normal or tangent component of 𝑢. For instance if
one wants to prescribe only the normal component, 𝐻 will be chosen to be equal to 𝑛𝑛𝑇 where 𝑛 is the
outward unit normal on Γ𝐷.

Nitsche’s method for prescribing this Dirichlet condition consists in adding the following term to the
weak formulation of the problem∫︁

Γ𝐷

1

𝛾
(𝐻𝑢− 𝑔 − 𝛾𝐻𝐺).(𝐻𝑣)− 𝜃(𝐻𝑢− 𝑔).(𝐻𝐷𝑢𝐺[𝑣])𝑑Γ,

where 𝛾 and 𝜃 are two parameters of Nitsche’s method and 𝑣 is the test function corresponding to 𝑢. The
parameter 𝜃 can be chosen positive or negative. 𝜃 = 1 corresponds to the more standard method which
leads to a symmetric tangent term in standard situations, 𝜃 = 0 corresponds to a non-symmetric method
which has the advantage of a reduced number of terms and not requiring the second derivatives of 𝐺
in the nonlinear case, and 𝜃 = −1 is a kind of skew-symmetric method which ensures an inconditonal
coercivity (which means independent of 𝛾) at least in standard situations. The parameter 𝛾 is a kind of
penalization parameter (although the method is consistent) which is taken to be 𝛾 = 𝛾0ℎ𝑇 where 𝛾0 is
taken uniform on the mesh and ℎ𝑇 is the diameter of the element 𝑇 . Note that, in standard situations,
except for 𝜃 = −1 the parameter 𝛾0 has to be taken sufficiently small in order to ensure the convergence
of Nitsche’s method.

The bricks adding a Dirichlet condition with Nitsche’s method to a model are the following:

getfem::add_Dirichlet_condition_with_Nitsche_method
(model &md, const mesh_im &mim, const std::string &varname,
const std::string &Neumannterm,
const std::string &gamma0name, size_type region,
scalar_type theta = scalar_type(1),
const std::string &dataname = std::string());

This function adds a Dirichlet condition on the variable varname and the mesh region region.
This region should be a boundary. Neumannterm is the expression of the Neumann term (ob-
tained by the Green formula) described as an expression of GWFL. This term can be obtained with
md.Neumann_term(varname, region) once all volumic bricks have been added to the model. The Dirich-
let condition is prescribed with Nitsche’s method. dataname is the optional right hand side of the Dirich-
let condition. It could be constant or described on a fem; scalar or vector valued, depending on the
variable on which the Dirichlet condition is prescribed. gamma0name is the Nitsche’s method param-
eter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to the standard
symmetric method which is conditionally coercive for gamma0 small. theta = -1 corresponds to the
skew-symmetric method which is inconditionally coercive. theta = 0 is the simplest method for which
the second derivative of the Neumann term is not necessary even for nonlinear problems. Returns the
brick index in the model.

getfem::add_normal_Dirichlet_condition_with_Nitsche_method
(model &md, const mesh_im &mim, const std::string &varname,
const std::string &Neumannterm,

(continues on next page)

23.13. Nitsche’s method for dirichlet and contact boundary conditions 121

User Documentation, Release 5.4.2

(continued from previous page)

const std::string &gamma0name, size_type region,
scalar_type theta = scalar_type(1),
const std::string &dataname = std::string());

This function adds a Dirichlet condition to the normal component of the vector (or tensor) valued variable
varname and the mesh region region. This region should be a boundary. Neumannterm is the expression
of the Neumann term (obtained by the Green formula) described as an expression of GWFL. This term
can be obtained with md.Neumann_term(varname, region) once all volumic bricks have been added
to the model. The Dirichlet condition is prescribed with Nitsche’s method. dataname is the optional
right hand side of the Dirichlet condition. It could be constant or described on a fem. gamma0name
is the Nitsche’s method parameter. theta is a scalar value which can be positive or negative. theta =
1 corresponds to the standard symmetric method which is conditionally coercive for gamma0 small.
theta = -1 corresponds to the skew-symmetric method which is inconditionally coercive. theta = 0 is
the simplest method for which the second derivative of the Neumann term is not necessary even for
nonlinear problems. Returns the brick index in the model. (This brick is not fully tested)

getfem::add_generalized_Dirichlet_condition_with_Nitsche_method
(model &md, const mesh_im &mim, const std::string &varname,
const std::string &Neumannterm,
const std::string &gamma0name, size_type region, scalar_type theta,
const std::string &dataname, const std::string &Hname);

This function adds a Dirichlet condition on the variable varname and the mesh region region. This
version is for vector field. It prescribes a condition 𝐻𝑢 = 𝑟 where 𝐻 is a matrix field. The region
should be a boundary. This region should be a boundary. Neumannterm is the expression of the Neumann
term (obtained by the Green formula) described as an expression of GWFL. This term can be obtained
with md.Neumann_term(varname, region) once all volumic bricks have been added to the model. The
Dirichlet condition is prescribed with Nitsche’s method. CAUTION : the matrix H should have all
eigenvalues equal to 1 or 0. dataname is the optional right hand side of the Dirichlet condition. It could
be constant or described on a fem. gamma0name is the Nitsche’s method parameter. theta is a scalar
value which can be positive or negative. theta = 1 corresponds to the standard symmetric method which
is conditionally coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method
which is inconditionally coercive. theta = 0 is the simplest method for which the second derivative of
the Neumann term is not necessary even for nonlinear problems. Hname is the data corresponding to
the matrix field H. It has to be a constant matrix or described on a scalar fem. Returns the brick index in
the model. (This brick is not fully tested)

23.13.2 Generic Nitsche’s method for contact with friction condition

We describe here the use of Nitsche’s method to prescribe a contact with Coulomb friction condition
in the small deformations framework. This corresponds to a weak integral contact condition which as
some similarity with the ones which use Lagrange multipliers describe in the corresponding section, see
Weak integral contact condition

In order to simplify notations, let use denote by 𝑃𝑛,F the following map which corresponds to a couple
of projections:

𝑃𝑛,F (𝑥) = −(𝑥.𝑛)−𝑛+ 𝑃𝐵(0,F (𝑥.𝑛)−)(𝑥− (𝑥.𝑛)𝑛)

This application make the projection of the normal part of 𝑥 on IR− and the tangential part on the ball
of center 0 and radius F (𝑥.𝑛)−, where F is the friction coefficient.

122 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

Using this, and considering that the sliding velocity is approximated by 𝛼(𝑢𝑇 −𝑤𝑇) where the expression
of 𝛼 and𝑤𝑇 depend on the time integration scheme used (see Weak integral contact condition), Nitsche’s
term for contact with friction reads as:

−
∫︁
Γ𝐶

𝜃𝛾𝐺 ·𝐷𝑢𝐺[𝑣]𝑑Γ

+

∫︁
Γ𝐶

𝛾𝑃𝑛,F (𝐺− 𝐴𝑢

𝛾
+
𝑔𝑎𝑝

𝛾
𝑛+

𝛼𝑤𝑇

𝛾
) · (𝜃𝐷𝑢𝐺[𝑣]−

𝑣

𝛾
)𝑑Γ.

where Γ𝐶 is the contact boundary, 𝐺 is the Neumann term which represents here 𝜎𝑛 the stress at the
contact boundary and 𝐴 is the 𝑑× 𝑑 matrix

𝐴 = 𝛼𝐼𝑑 + (1− 𝛼)𝑛𝑛𝑇

Note that for the variant with 𝜃 = 0 a majority of terms vanish.

The following function adds a contact condition with or without Coulomb friction on the variable var-
name_u and the mesh boundary region. Neumannterm is the expression of the Neumann term (ob-
tained by the Green formula) described as an expression of GWFL. This term can be obtained with
md.Neumann_term(varname, region) once all volumic bricks have been added to the model. The con-
tact condition is prescribed with Nitsche’s method. The rigid obstacle should be described with the data
dataname_obstacle being a signed distance to the obstacle (interpolated on a finite element method).
gamma0name is the Nitsche’s method parameter. theta is a scalar value which can be positive or neg-
ative. theta = 1 corresponds to the standard symmetric method which is conditionally coercive for
gamma0 small. theta = -1 corresponds to the skew-symmetric method which is inconditionally coer-
cive. theta = 0 is the simplest method for which the second derivative of the Neumann term is not
necessary. The optional parameter dataexpr_friction_coeff is the friction coefficient which could be any
expression of GWFL. Returns the brick index in the model.:

getfem::add_Nitsche_contact_with_rigid_obstacle_brick
(model &md, const mesh_im &mim, const std::string &varname_u,
const std::string &Neumannterm,
const std::string &expr_obs, const std::string &dataname_gamma0,
scalar_type theta_,
std::string dataexpr_friction_coeff,
const std::string &dataname_alpha,
const std::string &dataname_wt,
size_type region);

23.14 Constraint brick

The constraint brick allows to add an explicit constraint on a variable. Explicit means that no integration
is done. if 𝑈 is a variable then a constraint of the type

𝐵𝑈 = 𝐿,

can be added with the two following functions:

indbrick = getfem::add_constraint_with_penalization(md, varname,
penalisation_coeff, B,

→˓L);
indbrick = getfem::add_constraint_with_multipliers(md, varname,

multname, B, L);

23.14. Constraint brick 123

User Documentation, Release 5.4.2

In the second case, a (fixed size) variable which will serve as a multiplier should be first added to the
model.

For the penalized version B should not contain a plain row, otherwise the whole tangent matrix will be
plain. The penalization parameter can be changed thanks to the function:

change_penalization_coeff(md, ind_brick, penalisation_coeff);

It is possible to change the constraints at any time thanks to the two following functions:

getfem::set_private_data_matrix(md, indbrick, B)
getfem::set_private_data_rhs(md, indbrick, L)

where indbrick is the index of the brick in the model.

23.15 Other “explicit” bricks

Two (very simple) bricks allow to add some explicit terms to the tangent system.

The function:

indbrick = getfem::add_explicit_matrix(md, varname1, varname2, B
issymmetric = false,
iscoercive = false);

adds a brick which just adds the matrix B to the tangent system relatively to the variables varname1
and varname2. The given matrix should have as many rows as the dimension of varname1 and as
many columns as the dimension of varname2. If the two variables are different and if issymmetric
is set to true then the transpose of the matrix is also added to the tangent system (default is false). Set
iscoercive to true if the term does not affect the coercivity of the tangent system (default is false).
The matrix can be changed by the command:

getfem::set_private_data_matrix(md, indbrick, B);

The function:

getfem::add_explicit_rhs(md, varname, L);

adds a brick which just add the vector L to the right hand side of the tangent system relatively to the
variable varname. The given vector should have the same size as the variable varname. The value of
the vector can by changed by the command:

getfem::set_private_data_rhs(md, indbrick, L);

23.16 Helmholtz brick

This brick represents the complex or real Helmholtz problem:

Δ𝑢+ 𝑘2𝑢 = . . .

where 𝑘 the wave number is a real or complex value. For a complex version, a complex model has to be
used (see tests/helmholtz.cc).

124 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

The function adding a Helmholtz brick to a model is:

getfem::add_Helmholtz_brick(md, mim, varname, dataexpr, region);

where varname is the variable on which the Helmholtz term is added and dataexpr is the wave
number.

23.17 Fourier-Robin brick

This brick can be used to add boundary conditions of Fourier-Robin type like:

𝜕𝑢

𝜕𝜈
= 𝑄𝑢

for scalar problems, or

𝜎 · 𝜈 = 𝑄𝑢

for linearized elasticity problems. Q is a scalar field in the scalar case or a matrix field in the vectorial
case. This brick works for both real or complex terms in scalar or vectorial problems.

The function adding this brick to a model is:

add_Fourier_Robin_brick(md, mim, varname, dataexpr, region);

where dataexpr is the data of the model which represents the coefficient 𝑄. It can be an arbitrary
valid expression of GWFL, the generic weak form language (except for the complex version for which
it should be a data of the model)

Note that an additional right hand side can be added with a source term brick.

23.18 Isotropic linearized elasticity brick

This brick represents a term

−𝑑𝑖𝑣(𝜎) = . . .

with

𝜎 = 𝜆tr(𝜀(𝑢))𝐼 + 2𝜇𝜀(𝑢)

𝜀(𝑢) = (∇𝑢+∇𝑢𝑇)/2

𝜀(𝑢) is the small strain tensor, 𝜎 is the stress tensor, 𝜆 and 𝜇 are the Lamé coefficients. This represents
the system of linearized isotropic elasticity. It can also be used with 𝜆 = 0 together with the linear
incompressible brick to build the Stokes problem.

Let us recall that the relation between the Lamé coefficients an Young modulus 𝐸 and Poisson ratio 𝜈 is

𝜆 =
𝐸𝜈

(1 + 𝜈)(1− 2𝜈)
, 𝜇 =

𝐸

2(1 + 𝜈)
,

except for the plane stress approximation (2D model) where

𝜆* =
𝐸𝜈

(1− 𝜈2)
, 𝜇 =

𝐸

2(1 + 𝜈)
,

The function which adds this brick to a model and parametrized with the Lamé coefficients is:

23.17. Fourier-Robin brick 125

User Documentation, Release 5.4.2

ind_brick = getfem::add_isotropic_linearized_elasticity_brick
(md, mim, varname, data_lambda, data_mu,
region = size_type(-1));

where dataname_lambda and dataname_mu are the data of the model representing the Lamé
coefficients.

The function which adds this brick to a model and parametrized with Young modulus and Poisson ratio
is:

ind_brick = getfem::add_isotropic_linearized_elasticity_pstrain_brick
(md, mim, varname, data_E, data_nu, region = size_type(-1));

This brick represent a plane strain approximation when it is applied to a 2D mesh (and a standard model
on a 3D mesh). In order to obtain a plane stress approximation for 2D meshes, one can use:

ind_brick = getfem::add_isotropic_linearized_elasticity_pstress_brick
(md, mim, varname, data_E, data_nu, region = size_type(-1));

For 3D meshes, the two previous bricks give the same result.

The function:

getfem::compute_isotropic_linearized_Von_Mises_or_Tresca
(md, varname, dataname_lambda, dataname_mu, mf_vm, VM, tresca_flag =

→˓false);

compute the Von Mises criterion (or Tresca if tresca_flag is set to true) on the displacement field
stored in varname. The stress is evaluated on the mesh_fem mf_vm and stored in the vector VM. It is
not valid for 2D plane stress approximation and is parametrized with Lamé coefficients. The functions:

getfem::compute_isotropic_linearized_Von_Mises
(md, varname, data_E, data_nu, mf_vm, VM);

getfem::compute_isotropic_linearized_Von_Mises
(md, varname, data_E, data_nu, mf_vm, VM);

compute the Von Mises stress, parametrized with Young modulus and Poisson ratio, the second one
being valid for 2D plane stress approximation when it is applied on a 2D mesh (the two functions give
the same result for 3D problems).

The program tests/elastostatic.cc can be taken as a model of use of a linearized isotropic
elasticity brick.

23.19 Linear incompressibility (or nearly incompressibility) brick

This brick adds a linear incompressibility condition (or a nearly incompressible condition) in a problem
of type:

div(𝑢) = 0, (or div(𝑢) = 𝜀𝑝)

This constraint is enforced with Lagrange multipliers representing the pressure, introduced in a mixed
formulation.

The function adding this incompressibility condition is:

126 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

ind_brick = getfem::add_linear_incompressibility
(md, mim, varname, multname_pressure, region = size_type(-1),
dataexpr_penal_coeff = std::string());

where varname is the variable on which the incompressibility condition is prescribed,
multname_pressure is a variable which should be described on a scalar fem representing the mul-
tiplier (the pressure) and dataexpr_penal_coeff is an optional penalization coefficient for the
nearly incompressible condition.

In nearly incompressible homogeneous linearized elasticity, one has 𝜀 = 1/𝜆 where 𝜆 is one of the
Lamé coefficient and 𝜀 the penalization coefficient.

For instance, the following program defines a Stokes problem with a source term and an homogeneous
Dirichlet condition on boundary 0. mf_u, mf_data and mf_p have to be valid finite element descrip-
tion on the same mesh. mim should be a valid integration method on the same mesh:

typedef std::vector<getfem::scalar_type> plain_vector;
size_type N = mf_u.linked_mesh().dim();

getfem::model Stokes_model;

laplacian_model.add_fem_variable("u", mf_u);

getfem::scalar_type mu = 1.0;
Stokes_model.add_initialized_data("lambda", plain_vector(1, 0.0));
Stokes_model.add_initialized_data("mu", plain_vector(1, mu));

getfem::add_isotropic_linearized_elasticity_brick(Stokes_model, mim,
"u", "lambda", "mu");

laplacian_model.add_fem_variable("p", mf_p);
getfem::add_linear_incompressibility(Stokes_model, mim, "u", "p");

plain_vector F(mf_data.nb_dof()*N);
for (int i = 0; i < mf_data.nb_dof()*N; ++i) F(i) = ...;
Stokes_model.add_initialized_fem_data("VolumicData", mf_data, F);
getfem::add_source_term_brick(Stokes_model, mim, "u", "VolumicData");

getfem::add_Dirichlet_condition_with_multipliers(Stokes_model, mim,
"u", mf_u, 1);

gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(Stokes_model, iter);

plain_vector U(mf_u.nb_dof());
gmm::copy(Stokes_model.real_variable("u"), U);

An example for a nearly incompressibility condition can be found in the program tests/
elastostatic.cc.

23.20 Mass brick

This brick represents a weak term of the form∫︁
Ω
𝜌𝑢 · 𝑣 𝑑𝑥+ . . .

23.20. Mass brick 127

User Documentation, Release 5.4.2

It mainly represents a mass term for transient problems but can also be used for other applications (it
can be used on a boundary). Basically, this brick adds a mass matrix on the tangent linear system with
respect to a certain variable.

The function which adds this brick to a model is:

ind_brick = getfem::add_mass_brick
(md, mim, varname, dataexpr_rho="", region = size_type(-1));

where dataexpr_rho is an optional expression representing the density 𝜌. If it is omitted, the density
is assumed to be equal to one.

23.21 Bilaplacian and Kirchhoff-Love plate bricks

The following function

ind = add_bilaplacian_brick(md, mim, varname, dataname,
region = size_type(-1));

adds a bilaplacian brick on the variable varname and on the mesh region region. This represent a term
Δ(𝐷Δ𝑢). where 𝐷(𝑥) is a coefficient determined by dataname which could be constant or described
on a f.e.m. The corresponding weak form is

∫︀
𝐷(𝑥)Δ𝑢(𝑥)Δ𝑣(𝑥)𝑑𝑥.

For the Kirchhoff-Love plate model, the weak form is a bit different (and more stable than the previous
one). the function to add that term is

ind = add_bilaplacian_brick_KL(md, mim, varname, dataname1, dataname2,
region = size_type(-1));

It adds a bilaplacian brick on the variable varname and on the mesh region region. This represent a term
Δ(𝐷Δ𝑢) where 𝐷(𝑥) is a the flexion modulus determined by dataname1. The term is integrated by
part following a Kirchhoff-Love plate model with dataname2 the poisson ratio.

There is specific bricks to add appropriate boundary conditions for fourth order partial differential equa-
tions. The first one is

ind = add_normal_derivative_source_term_brick(md, mim, varname,
dataname, region);

which adds a normal derivative source term brick 𝐹 =
∫︀
𝑏.𝜕𝑛𝑣 on the variable varname and on the mesh

region region. It updates the right hand side of the linear system. dataname represents b and varname
represents v.

A Neumann term can be added thanks to the following bricks

ind = add_Kirchhoff_Love_Neumann_term_brick(md, mim, varname,
dataname1, dataname2, region);

which adds a Neumann term brick for Kirchhoff-Love model on the variable varname and the mesh
region region. dataname1 represents the bending moment tensor and dataname2 its divergence.

And a Dirichlet condition on the normal derivative can be prescribed thanks to the following bricks

128 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

ind = add_normal_derivative_Dirichlet_condition_with_multipliers
(md, mim, varname, multname, region, dataname = std::string(),
R_must_be_derivated = false);

ind = add_normal_derivative_Dirichlet_condition_with_multipliers
(md, mim, varname, mf_mult, region, dataname = std::string(),
R_must_be_derivated = false);

ind = add_normal_derivative_Dirichlet_condition_with_multipliers
(md, mim, varname, degree, region, dataname = std::string(),
R_must_be_derivated = false);

These bricks add a Dirichlet condition on the normal derivative of the variable varname and on the
mesh region region (which should be a boundary). The general form is

∫︀
𝜕𝑛𝑢(𝑥)𝑣(𝑥) =

∫︀
𝑟(𝑥)𝑣(𝑥)∀𝑣

where 𝑟(𝑥) is the right hand side for the Dirichlet condition (0 for homogeneous conditions) and 𝑣 is in
a space of multipliers defined by the variable multname (first version) or defined on the finite element
method mf_mult (second version) or simply on a Lagrange finite element method of degree degree
(third version) on the part of boundary determined by region. dataname is an optional parameter which
represents the right hand side of the Dirichlet condition. If R_must_be_derivated is set to true then the
normal derivative of dataname is considered.

The test program bilaplacian.cc is a good example of the use of the previous bricks.

23.22 Mindlin-Reissner plate model

This brick implements the classical Mindlin-Reissner bending model for isotropic plates.

23.22.1 The Mindlin-Reissner plate model

Let Ω ⊂ IR2 be the reference configuration of the mid-plane of a plate of thickness 𝜖.

The weak formulation of the Mindlin-Reissner model for isotropic material can be written as follows for
𝑢3 the transverse displacement and 𝜃 the rotation of fibers normal to the mid-plane:∫︁

Ω
𝐷𝜖3 ((1− 𝑣)𝛾(𝜃) : 𝛾(𝜓) + 𝜈div(𝜃)div(𝜓)) 𝑑𝑥

+

∫︁
Ω
𝐺𝜖(∇𝑢3 − 𝜃) · (∇𝑣3 − 𝜓)𝑑𝑥 =

∫︁
Ω
𝐹3𝑣3 +𝑀.𝜓𝑑𝑥,

for all admissible test functions 𝑣3 : Ω → IR, 𝜓 : Ω → IR2 and where:

𝐷 =
𝐸

12(1− 𝜈2)
, 𝐺 =

𝐸𝜅

2(1 + 𝜈)
,

𝛾(𝜃) = (∇𝜃 +∇𝜃𝑇)/2,

𝐹3 =

∫︁ 𝜖/2

−𝜖/2
𝑓3𝑑𝑥3 + 𝑔+3 + 𝑔−3 ,

𝑀𝛼 = 𝜖(𝑔+𝛼 − 𝑔−𝛼)/2 +

∫︁ 𝜖/2

−𝜖/2
𝑥3𝑓𝛼𝑑𝑥3, 𝛼 ∈ {1, 2},

𝑓 being a volumic force applied inside the three dimensional plate, 𝑔+ and 𝑔− a force applied on the top
and bottom surface of the plate, 𝐸 Young’s modulus, 𝜈 Poisson’s ratio and 𝜅 the shear correction factor
(usually set to 5/6).

23.22. Mindlin-Reissner plate model 129

User Documentation, Release 5.4.2

The classical boundary conditions are the following:

• Simple support : a dirichlet condition on 𝑢3.

• Clamped support : a dirichlet condition on both 𝑢3 and 𝜃.

• Prescribed transverse force : boundary source term on 𝑢3.

• Prescribed moment : boundary source term on 𝜃.

An important issue of this model is that it is subjected to the so called shear locking so that a direct
Galerkin procedure do not give a satisfactory approximation. There is several ways to circumvent the
shear locking problem : reduced integration, projection of the transverse shear term, mixed methods.
The two first method are proposed.

Reduced integration of the transverse shear term

This strategy consists simply to use a lower order integration method to numerically compute the term∫︁
Ω
𝐺𝜖(∇𝑢3 − 𝜃) · (∇𝑣3 − 𝜓)𝑑𝑥

This strategy is working properly at least when both the rotation and the transverse displacement is
approximated with Q1 quadrilateral element with a degree one reduced integration method (the so-called
QUAD4 element).

Projection of the transverse shear term

Another strategy comes from the MITC elements (Mixed Interpolation of Tensorial Components) which
correspond to a re-interpretation in terms of projection of some mixed methods. The most popular
element of this type is the MITC4 which correspond to the quadrilateral element Q1 with a projection of
the transverse shear term on a rotated Raviart-Thomas element of lowest degree (RT0) (see [ba-dv1985],
[br-ba-fo1989]). This means that the transverse shear term becomes∫︁

Ω
𝐺𝜖𝑃 ℎ(∇𝑢3 − 𝜃) · 𝑃 ℎ(∇𝑣3 − 𝜓)𝑑𝑥

where 𝑃 ℎ(𝑇) is the elementwize 𝐿2-projection onto the rotated RT0 space. For the moment, the only
projection implemented is the previous described one (projection on rotated RT0 space for quadrilat-
eral element). Higher degree elements and triangular elements can be found in the litterature (see
[Mi-Zh2002], [br-ba-fo1989], [Duan2014]) and will be under consideration for a future implementa-
tion. Note also that since 𝑃 ℎ(∇𝑢3) = ∇𝑢3, the term reduces to∫︁

Ω
𝐺𝜖(∇𝑢3 − 𝑃 ℎ(𝜃)) · (∇𝑣3 − 𝑃 ℎ(𝜓))𝑑𝑥

The principle of the definition of an elementary projection is explained if the description of GWFL, the
generic weak form language (see Elementary transformations) and an example can be found in the file
src/getfem_linearized_plates.cc.

23.22.2 Add a Mindlin-Reissner plate model brick to a model

The following function defined in src/getfem/getfem_linearized_plates.h allows to add
a Mindlin-Reissner plate model term to a transverse displacement u3 and a rotation theta:

130 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

size_type add_Mindlin_Reissner_plate_brick
(model, mim, mim_reduced, name_u3, name_theta, param_E,
param_nu, param_epsilon, param_kappa, variant = 2, region)

where name_u3 is name of the variable which represents the transverse displacmenent, name_theta
the variable which represents the rotation, param_E the Young Modulus, param_nu the poisson ratio,
param_epsilon the plate thickness, param_kappa the shear correction factor. Note that since this brick
uses GWFL, the parameter can be regular expression of this language. There are three variants. variant
= 0 corresponds to the an unreduced formulation and in that case only the integration method mim is
used. Practically this variant is not usable since it is subject to a strong locking phenomenon. variant =
1 corresponds to a reduced integration where mim is used for the rotation term and mim_reduced for the
transverse shear term. variant = 2 (default) corresponds to the projection onto a rotated RT0 element
of the transverse shear term. For the moment, this is adapted to quadrilateral only (because it is not
sufficient to remove the locking phenomenon on triangle elements). Note also that if you use high order
elements, the projection on RT0 will reduce the order of the approximation. Returns the brick index in
the model.

The projection on rotated RTO element can be added to a model thanks to the following function:

void add_2D_rotated_RT0_projection(model, transname);

23.23 The model tools for the integration of transient problems

Although time integration scheme can be written directly using the model object by describing the
problem to be solved at each iteration, the model object furnishes some basic tools to facilitate the
writing of such schemes. These tools are based on the following basic principles:

• The original variables of the model represent the state of the system to be solved at the current
time step (say step n). This is the case even for a middle point scheme, mainly because if one
needs to apply different schemes to different variables of the system, all variable should describe
the system at a unique time step.

• Some data are added to the model to represent the state of the system at previous time steps.
For classical one-step schemes (for the moment, only one-step schemes are provided), only the
previous time step is stored. For instance if u is a variable (thus represented at step n), Previous_u,
Previous2_u, Previous3_u will be the data representing the state of the variable at the previous
time step (step n-1, n-2 and n-3).

• Some intermediate variables are added to the model to represent the time derivative (and the
second order time derivative for second order problem). For instance, if u is a variable, Dot_u
will represent the first order time derivative of u and Dot2_u the second order one. One can refer
to these variables in the model to add a brick on it or to use it in GWFL, the generic weak form
language. However, these are not considered to be independent variables, they will be linked to
their corresponding original variable (in an affine way) by the time integration scheme. Most of the
schemes need also the time derivative at the previous time step and add the data Previous_Dot_u
and possibly Previous_Dot2_u to the model.

• A different time integration scheme can be applied on each variable of the model. Note that most
of the time, multiplier variable and more generally variables for which no time derivative is used
do not need a time integration scheme.

• The data t represent the time parameter and can be used (either in GWFL or as parameter of some
bricks). Before the assembly of the system, the data t is automatically updated to the time step n.

23.23. The model tools for the integration of transient problems 131

User Documentation, Release 5.4.2

• The problem to be solved at each iteration correspond to the formulation of the transient problem
in its natural (weak) formulation in which the velocity and the acceleration are expressed by the
intermediate variables introduced. For instance, the translation into GWFL of the problem

�̇�(𝑡, 𝑥)−Δ𝑢(𝑡, 𝑥) = sin(𝑡)

can simply be:

Dot_u*Test_u + Grad_u.Grad_Test_u - sin(t)*Test_u

(even though, of course, in this situation, the use of linear bricks is preferable for efficiency rea-
sons)

• For all implemented one-step schemes, the time step can be changed from an iteration to another
for both order one and order two in time problems (or even quasi-static problems).

• A scheme for second order in time problem (resp. first order in time) can be applied to a second or
first order in time or even to a quasi-static problem (resp. to a first order or quasi-static problem)
without any problem except that the initial data corresponding to the velocity/displacement have
to be initialized with respect ot the order of the scheme. Conversely, of course, a scheme for first
order problem cannot be applied to a second order in time problem.

23.23.1 The implicit theta-method for first-order problems

For a problem which reads

𝑀�̇� = 𝐹 (𝑈)

where 𝐹 (𝑈) might be nonlinear (and may depend on some other variables for coupled problems), for 𝑑𝑡
a time step, 𝑉 = �̇� and 𝑈𝑛, 𝑉 𝑛 the approximation of 𝑈, 𝑉 at time 𝑛𝑑𝑡, theta-method reads{︂

𝑈𝑛 = 𝑈𝑛−1 + 𝑑𝑡(𝜃𝑉 𝑛 + (1− 𝜃)𝑉 𝑛−1),
𝑀𝑉 𝑛 = 𝐹 (𝑈𝑛),

for 𝜃 ∈ (0, 1] the parameter of the theta-method (for 𝜃 = 0, the method corresponds to the forward Euler
method and is not an implicit scheme) and for 𝑈𝑛−1, 𝑉 𝑛−1 given.

Before the first time step, 𝑈0 should be initialized, however, 𝑉 0 is also needed (except for 𝜃 = 1).
In this example, it should correspond to 𝑀−1𝐹 (𝑈0). For a general coupled problem where 𝑀 might
be singular, a generic precomputation of 𝑉 0 is difficult to obtain. Thus 𝑉 0 have to be furnisded also.
Alternatively (see below) the model object (and the standard solve) furnishes a mean to evaluate them
thanks to the application of a Backward Euler scheme on a (very) small time step.

The following formula can be deduced for the time derivative:

𝑉 𝑛 =
𝑈𝑛 − 𝑈𝑛−1

𝜃𝑑𝑡
− 1− 𝜃

𝜃
𝑉 𝑛−1

When applying this scheme to a variable “u” of the model, the following affine dependent variable is
added to the model:

"Dot_u"

which represent the time derivative of the variable and can be used in some brick definition.

The following data are also added:

132 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

"Previous_u", "Previous_Dot_u"

which correspond to the values of “u” and “Dot_u” at the previous time step.

Before the solve, the data “Previous_u” (corresponding to𝑈0 in the example) has to be initialized (except
for 𝜃 = 1). Again, “Previous_Dot_u” has to be either initialized or pre-computed as described in the
next section. The affine dependence of “Dot_u” is thus given by:

Dot_u = (u - Previous_u)/(theta*dt) - Previous_Dot_u*(1-theta)/theta

Which means that “Dot_u” will be replaced at assembly time by its expression in term of “u” (multipied
by 1/(𝜃*𝑑𝑡)) and in term of a constant remaining part depending on the previous time step. The addition
of this scheme to a variable is to be done thanks to:

add_theta_method_for_first_order(model &md, const std::string &varname,
→˓scalar_type theta);

23.23.2 Precomputation of velocity/acceleration

Most of the time integration schemes (except, for instance, the backward Euler scheme) needs the pre-
computation of the first or second order time derivative before the initial time step (for instance 𝑉 0 for
the theta-method for first order problems, 𝐴0 for second order problems . . .).

The choice is let to the user to either initialize these derivative or to ask to the model to automatically
approximate them.

The method used (for the moment) to approximate the supplementary derivatives may be explained in
the example of the solve of

𝑀�̇� = 𝐹 (𝑈)

with a theta-method (see the previous section). In order to approximate 𝑉0, the theta-method is applied
for 𝜃 = 1 (i.e. a backward Euler scheme) on a very small time step. This is possible since the backward
Euler do not need an initial time derivative. Then the time derivative computed thanks to the backward
Euler at the end of the very small time step is simply used as an approximation of the initial time
derivative.

For a model md, the following instructions:

model.perform_init_time_derivative(ddt);
standard_solve(model, iter);

allows to perform automatically the approximation of the initial time derivative. The parameter ddt
corresponds to the small time step used to perform the aproximation. Typically, ddt = dt/20 could be
used where dt is the time step used to approximate the transient problem (see the example below).

23.23.3 The implicit theta-method for second-order problems

For a problem which reads

𝑀�̈� = 𝐹 (𝑈)

23.23. The model tools for the integration of transient problems 133

User Documentation, Release 5.4.2

where 𝐹 (𝑈) might be nonlinear (and may depend on some othere variables for coupled problems), for
𝑑𝑡 a time step, 𝑉 = �̇� , 𝐴 = �̈� and 𝑈𝑛, 𝑉 𝑛, 𝐴𝑛 the approximation of 𝑈, 𝑉,𝐴 at time 𝑛𝑑𝑡, the first oder
theta-method reads ⎧⎨⎩

𝑈𝑛 = 𝑈𝑛−1 + 𝑑𝑡(𝜃𝑉 𝑛 + (1− 𝜃)𝑉 𝑛−1),
𝑉 𝑛 = 𝑉 𝑛−1 + 𝑑𝑡(𝜃𝐴𝑛 + (1− 𝜃)𝐴𝑛−1),
𝑀𝐴𝑛 = 𝐹 (𝑈𝑛),

for 𝜃 ∈ (0, 1] the parameter of the theta-method (for 𝜃 = 0, the method correspond to the forward Euler
method and is not an implicit scheme) and for 𝑈𝑛−1, 𝑉 𝑛−1, 𝐴𝑛−1 given.

At the first time step, 𝑈0, 𝑉 0 should be given and 𝐴0 is to be given or pre-computed (except for 𝜃 = 1).

The following formula can be deduced for the time derivative:

𝑉 𝑛 =
𝑈𝑛 − 𝑈𝑛−1

𝜃𝑑𝑡
− 1− 𝜃

𝜃
𝑉 𝑛−1

𝐴𝑛 =
𝑈𝑛 − 𝑈𝑛−1

𝜃2𝑑𝑡2
− 1

𝜃2𝑑𝑡
𝑉 𝑛−1 − 1− 𝜃

𝜃
𝐴𝑛−1

When aplying this scheme to a variable “u” of the model, the following affine dependent variables are
added to the model:

"Dot_u", "Dot2_u"

which represent the first and second order time derivative of the variable and can be used in some brick
definition.

The following data are also added:

"Previous_u", "Previous_Dot_u", "Previous_Dot2_u"

which correspond to the values of “u”, “Dot_u” and “Dot2_u” at the previous time step.

Before the solve, the data “Previous_u” and “Previous_Dot_u” (corresponding to 𝑈0 in the example)
have to be initialized and “Previous_Dot2_u” should be either initialized or precomputed (see the previ-
ous section, and except for 𝜃 = 1). The affine dependences are thus given by:

Dot_u = (u - Previous_u)/(theta*dt) - Previous_Dot_u*(1-theta)/theta
Dot2_u = (u - Previous_u)/(theta*theta*dt*dt) - Previous_Dot_u/
→˓(theta*theta*dt) - Previous_Dot2_u*(1-theta)/theta

The addition of this scheme to a variable is to be done thanks to:

add_theta_method_for_second_order(model &md, const std::string &varname,
scalar_type theta);

23.23.4 The implicit Newmark scheme for second order problems

For a problem which reads

𝑀�̈� = 𝐹 (𝑈)

where 𝐹 (𝑈) might be nonlinear (and may depend on some othere variables for coupled problems), for
𝑑𝑡 a time step, 𝑉 = �̇� , 𝐴 = �̈� and 𝑈𝑛, 𝑉 𝑛, 𝐴𝑛 the approximation of 𝑈, 𝑉,𝐴 at time 𝑛𝑑𝑡, the first oder

134 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

theta-method reads ⎧⎨⎩ 𝑈𝑛 = 𝑈𝑛−1 + 𝑑𝑡𝑉 𝑛 + 𝑑𝑡2

2 (2𝛽𝑉 𝑛 + (1− 2𝛽)𝑉 𝑛−1),
𝑉 𝑛 = 𝑉 𝑛−1 + 𝑑𝑡(𝛾𝐴𝑛 + (1− 𝛾)𝐴𝑛−1),
𝑀𝐴𝑛 = 𝐹 (𝑈𝑛),

for 𝛽 ∈ (0, 1] and 𝛾 ∈ [1/2, 1] are the parameters of the Newmark scheme and for 𝑈𝑛−1, 𝑉 𝑛−1, 𝐴𝑛−1

given.

At the first time step, 𝑈0, 𝑉 0 should be given and 𝐴0 is to be given or pre-computed (except for 𝛽 =
1/2, 𝛾 = 1).

The following formula can be deduced for the time derivative:

𝑉 𝑛 =
𝛾

𝛽𝑑𝑡
(𝑈𝑛 − 𝑈𝑛−1) +

𝛽 − 𝛾

𝛽
𝑉 𝑛−1 + 𝑑𝑡(1− 𝛾

2𝛽
)𝐴𝑛−1

𝐴𝑛 =
𝑈𝑛 − 𝑈𝑛−1

𝛽𝑑𝑡2
− 1

𝛽𝑑𝑡
𝑉 𝑛−1 − (1/2− 𝛽)𝐴𝑛−1

When aplying this scheme to a variable “u” of the model, the following affine dependent variables are
added to the model:

"Dot_u", "Dot2_u"

which represent the first and second order time derivative of the variable and can be used in some brick
definition.

The following data are also added:

"Previous_u", "Previous_Dot_u", "Previous_Dot2_u"

which correspond to the values of “u”, “Dot_u” and “Dot2_u” at the previous time step.

Before the first solve, the data “Previous_u” and “Previous_Dot_u” (corresponding to𝑈0 in the example)
have to be initialized. The data “Previous_Dot2_u” is to be given or precomputed (see Precomputation
of velocity/acceleration and except for 𝛽 = 1/2, 𝛾 = 1).

The addition of this scheme to a variable is to be done thanks to:

add_Newmark_scheme(model &md, const std::string &varname,
scalar_type beta, scalar_type gamma);

23.23.5 The implicit Houbolt scheme

For a problem which reads

(𝐾 +
11

6𝑑𝑡
𝐶 +

2

𝑑𝑡2
𝑀)𝑢𝑛 = 𝐹𝑛 + (

5

𝑑𝑡2
𝑀 +

3

𝑑𝑡
𝐶)𝑢𝑛−1 − (

4

𝑑𝑡2
𝑀 +

3

2𝑑𝑡
𝐶)𝑢𝑛−2 + (

1

𝑑𝑡2
𝑀 +

1

3𝑑𝑡
𝐶)𝑢𝑛−3

where 𝑑𝑡 means a time step, 𝑀 the matrix in term of “Dot2_u”, 𝐶 the matrix in term of “Dot_u” and 𝐾
the matrix in term of “u”. The affine dependences are thus given by:

Dot_u = 1/(6*dt)*(11*u-18*Previous_u+9*Previous2_u-2*Previous3_u)
Dot2_u = 1/(dt**2)*(2*u-5*Previous_u+4*Previous2_u-Previous3_u)

When aplying this scheme to a variable “u” of the model, the following affine dependent variables are
added to the model:

23.23. The model tools for the integration of transient problems 135

User Documentation, Release 5.4.2

"Dot_u", "Dot2_u"

which represent the first and second order time derivative of the variable and can be used in some brick
definition.

The following data are also added:

"Previous_u", "Previous2_u", "Previous3_u"

which correspond to the values of “u” at the time step n-1, n-2 n-3.

Before the solve, the data “Previous_u”, “Previous2_u” and “Previous3_u” (corresponding to 𝑈0 in the
example) have to be initialized.

The addition of this scheme to a variable is to be done thanks to:

add_Houbolt_scheme(model &md, const std::string &varname);

23.23.6 Transient terms

As it has been explained in previous sections, some intermediate variables are added to the model in
order to represent the time derivative of the variables on which the scheme is applied. Once again, if “u”
is such a variable, “Dot_u” will represent the time derivative of “u” approximated by the used scheme.

This also mean that “Dot_u” (and “Dot2_u” in order two in time problems) can be used to express the
transient terms. In GWFL, the term: ∫︁

Ω
�̇�𝑣𝑑𝑥

can be simply expressed by:

Dot_u*Test_u

Similarly, every existing model brick of GetFEM can be applied to “Dot_u”. This is the case for instance
with:

getfem::add_mass_brick(model, mim, "Dot_u");

which adds the same transient term.

VERY IMPORTANT: When adding an existing model brick applied to an affine dependent variable such
as “Dot_u”, it is always assumed that the corresponding test function is the one of the corresponding
original variable (i.e. “Test_u” here). In other words, “Test_Dot_u”, the test variable corresponding to
the velocity, is not used. This corresponds to the choice made to solve the problem in term of the original
variable, so that the test function corresponds to the original variable.

Another example of model brick which can be used to account for a Kelvin-Voigt linearized viscosity
term is the linearized elasticity brick:

getfem::add_isotropic_linearized_elasticity_brick(model, mim, "Dot_u",
→˓"lambda_viscosity", "mu_viscosity");

when applied to an order two transient elasticity problem.

136 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

23.23.7 Computation on the sequence of time steps

Typically, the solve on the different time steps will take the following form:

for (scalar_type t = 0.; t < T; t += dt) { // time loop

// Eventually compute here some time dependent terms

iter.init();
getfem::standard_solve(model, iter);

// + Do something with the solution (plot or store it)

model.shift_variables_for_time_integration();
}

Note that the call of the method:

model.shift_variables_for_time_integration();

is needed between two time step since it will copy the current value of the variables (u and Dot_u for
instance) to the previous ones (Previous_u and Previous_Dot_u).

23.23.8 Boundary conditions

Standard boundary conditions can of course be applied normally to the different variables of the un-
known. By default, applying Dirichlet, Neumann or contact boundary conditions to the unknown simply
means that the conditions are prescribed on the variable at the current time step n.

23.23.9 Small example: heat equation

The complete compilable program corresponds to the test program tests/heat_equation.cc of
GetFEM distribution. See also /interface/tests/matlab/demo_wave_equation.m for an
example of order two in time problem with the Matlab interface.

Assuming that mf_u and mim are valid finite element and integration methods defined on a valid mesh,
the following code will perform the approximation of the evolution of the temperature on the mesh
assuming a unitary diffusion coefficient:

getfem::model model;
model.add_fem_variable("u", mf_u, 2); // Main unknown of the problem

getfem::add_generic_elliptic_brick(model, mim, "u"); // Laplace term

// Volumic source term.
getfem::add_source_term_generic_assembly_brick(model, mim, "sin(t)*Test_u
→˓");

// Dirichlet condition.
getfem::add_Dirichlet_condition_with_multipliers

(model, mim, "u", mf_u, DIRICHLET_BOUNDARY_NUM);

(continues on next page)

23.23. The model tools for the integration of transient problems 137

User Documentation, Release 5.4.2

(continued from previous page)

// transient part.
getfem::add_theta_method_for_first_order(model, "u", theta);
getfem::add_mass_brick(model, mim, "Dot_u");

gmm::iteration iter(residual, 0, 40000);

model.set_time(0.); // Init time is 0 (not mandatory)
model.set_time_step(dt); // Init of the time step.

// Null initial value for the temperature.
gmm::clear(model.set_real_variable("Previous_u"));

// Automatic computation of Previous_Dot_u
model.perform_init_time_derivative(dt/20.);
iter.init();
standard_solve(model, iter);

// Iterations in time
for (scalar_type t = 0.; t < T; t += dt) {

iter.init();
getfem::standard_solve(model, iter);

// + Do something with the solution (plot or store it)

// Copy the current variables "u" and "Dot_u" into "Previous_u"
// and "Previous_Dot_u".
model.shift_variables_for_time_integration();

}

23.23.10 Implicit/explicit some terms

. . .

23.23.11 Explicit schemes

. . .

23.23.12 Time step adaptation

. . .

23.23.13 Quasi-static problems

. . .

138 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

23.24 Small sliding contact with friction bricks

The aim of these bricks is to take into account a contact condition with or without friction of an elastic
structure on a rigid foundation or between two elastic structures. These bricks are restricted to small
deformation approximation of contact (this may include large deformations on a flat obstacle).

23.24.1 Approximation of contact

For small deformation problems submitted a simple (compared to large deformation !) expression of
the contact with friction condition is usually used where the tangential displacement do not influence
the normal one. This is an approximation in the sense that if an obstacle is not perfectly flat, the tan-
gential displacement of course influence the point where the contact holds. This will not be the case
in small deformation where the contact condition can be considered to be described on the reference
configuration.

There are mainly two largely used discretizations of the contact with friction condition in this frame-
work: a direct nodal contact condition (usually prescribed on the displacement finite element nodes)
or a weak nodal contact condition (usually prescribed on the multiplier finite element nodes). The two
discretization leads to similar system. However, the interpretation of quantities is not the same. A third
approach is developed on Getfem contact bricks: a weak integral contact condition. It needs the compu-
tation of a non-linear integral on the contact boundary at each iteration but the numerical resolution is
potentially more scalable because it derives directly from continuous principles.

More details can be found for instance in [KI-OD1988], [KH-PO-RE2006] and [LA-RE2006].

23.24.2 Direct nodal contact condition

A nodal contact condition consists in a certain number of contact nodes 𝑎𝑖, 𝑖 = 1..𝑁𝑐 on which a contact
with (or without) friction condition is applied. The contact condition reads

𝑢𝑁 (𝑎𝑖)− gap𝑖 ≤ 0, 𝜆𝑖𝑁 ≤ 0, (𝑢𝑁 (𝑎𝑖)− gap𝑖)𝜆
𝑖
𝑁 = 0,

where 𝜆𝑖𝑁 is the equivalent nodal contact force on 𝑎𝑖 and 𝑢𝑁 (𝑎𝑖) is the normal relative displacement
between the elastic solid and an obstacle or between two elastic solids. The term gap𝑖 represents the
normal gap between the two solids in the reference configuration. The friction condition reads

‖𝜆𝑖𝑇 ‖ ≤ −F𝜆𝑖𝑁 ,

𝜆𝑖𝑇 = F𝜆𝑖𝑁
�̇�𝑇
‖�̇�𝑇 ‖

when �̇�𝑇 ̸= 0,

where �̇�𝑇 is the relative slip velocity, F is the friction coefficient and 𝜆𝑖𝑇 the equivalent nodal friction
force on 𝑎𝑖. The friction condition can be summarized by the inclusion

𝜆𝑖𝑇 ∈ F𝜆𝑖𝑁Dir(�̇�𝑇),

where Dir(�̇�𝑇) is the multivalued map being the sub-differential of 𝑥 ↦→ ‖𝑥𝑇 ‖ (i.e. Dir(𝑥) = 𝑥
‖𝑥‖ when

𝑥 ̸= 0 and Dir(0) the closed unit ball). For two dimensional cases, Dir(�̇�𝑇) reduces to Sign(�̇�𝑇) where
Sign is the multivalued sign map.

A complete linearized elasticity problem with contact with friction reads as

23.24. Small sliding contact with friction bricks 139

User Documentation, Release 5.4.2

Given an augmentation parameter 𝑟, the contact and friction conditions can be equivalently expressed in
term of projection as

1

𝑟
(𝜆𝑖𝑁 − 𝑃]−∞,0](𝜆

𝑖
𝑁 − 𝑟(𝑢𝑁 (𝑎𝑖)− gap𝑖))) = 0,

1

𝑟
(𝜆𝑖𝑇 − 𝑃B(−F𝑃]−∞,0](𝜆

𝑖
𝑁−𝑟(𝑢𝑁 (𝑎𝑖)−gap𝑖))

(𝜆𝑖𝑇 − 𝑟�̇�𝑇 (𝑎𝑖))) = 0,

where 𝑃𝐾 is the projection on the convex 𝐾 and B(−F𝜆𝑖𝑁) is the ball of center 0 and radius −F𝜆𝑖𝑁 .
These expressions will be used to perform a semi-smooth Newton method.

Suppose now that you approximate a linearized elasticity problem submitted to contact with friction.
Then, if 𝑈 is the vector of the unknown for the displacement you will be able to express the matrices
𝐵𝑁 and 𝐵𝑇 such that

𝑢𝑁 (𝑎𝑖) = (𝐵𝑁𝑈)𝑖,

(�̇�𝑇 (𝑎𝑖))𝑘 = (𝐵𝑇 �̇�)(𝑑−1)(𝑖−1)+𝑘,

where 𝑑 is the dimension of the domain and 𝑘 = 1..𝑑− 1. The expression of the elasticity problem with
contact with friction can be written as

𝐾𝑈 = 𝐿+𝐵𝑇
𝑁𝜆𝑁 +𝐵𝑇

𝑇 𝜆𝑇 ,

− 1

𝑟𝛼𝑖
(𝜆𝑖𝑁 − 𝑃]−∞,0](𝜆

𝑖
𝑁 − 𝛼𝑖𝑟((𝐵𝑁𝑈)𝑖 − gap𝑖))) = 0, 𝑖 = 1..𝑁𝑐,

− 1

𝑟𝛼𝑖
(𝜆𝑖𝑇 − 𝑃B(−F𝑃]−∞,0](𝜆

𝑖
𝑁−𝛼𝑖𝑟((𝐵𝑁𝑈)𝑖−gap𝑖))))

(𝜆𝑖𝑇 − 𝛼𝑖𝑟(𝐵𝑇𝑈 −𝐵𝑇𝑈
0)𝑖)) = 0, 𝑖 = 1..𝑁𝑐,

where 𝛼𝑖 is a parameter which can be added for the homogenization of the augmentation parameter,
(𝐵𝑇𝑈)𝑖 denotes here the sub-vector of indices from (𝑑−1)(𝑖−1)+1 to (𝑑−1)𝑖 for the sake of simplicity
and the sliding velocity 𝐵𝑇 �̇� have been discretized into (𝐵𝑇𝑈−𝐵𝑇𝑈0)

Δ𝑡 with 𝑈0 the displacement at the
previous time step. Note that of course another discretization of the sliding velocity is possible and that
the time step Δ𝑡 do not appear in the expression of the friction condition since it does not influence the
direction of the sliding velocity.

In that case, the homogenization coefficient 𝛼𝑖 can be taken proportional to ℎ𝑑−2 (ℎ being the diameter
of the element). In this way, the augmentation parameter 𝑟 can be expressed in𝑁/𝑚2 and chosen closed
to the Young modulus of the elastic body. Note that the solution is not sensitive to the value of the
augmentation parameter.

23.24.3 Weak nodal contact condition

The direct nodal condition may have some drawback : locking phenomena, over-constraint. It is in
fact often more stable and for the same accuracy to use multiplier of reduced order compared to the
displacement (the direct nodal contact condition corresponds more or less to a multiplier described on
the same finite element method than the displacement).

Let 𝜙𝑖 be the shapes functions of the finite element describing the displacement and 𝜓𝑖 be the shape
functions of a finite element describing a multiplier on the contact boundary Γ𝑐. It is assumed that the
set of admissible multiplier describing the normal stress will be

Λℎ
𝑁 = {𝜇ℎ𝑁 =

∑︁
𝜇𝑗𝑁𝜓𝑗 : 𝜇

ℎ
𝑁 (𝑎𝑖) ≤ 0, 𝑖 = 1..𝑁𝑐}

where 𝑎𝑖, 𝑖 = 1..𝑁𝑐 are the finite element nodes corresponding to the multiplier. The discrete contact
condition is now expressed in a weak form by∫︁

Γ𝑐

(𝜇ℎ𝑁 − 𝜆ℎ𝑁)(𝑢𝑁 − gap)𝑑Γ ≥ 0 ∀𝜇ℎ𝑁 ∈ Λℎ
𝑁 .

140 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

In that case, the component 𝜆𝑖𝑁 is a contact stress (𝑁/𝑚2) and the matrix 𝐵𝑁 can be written

(𝐵𝑁)𝑖𝑗 =

∫︁
Γ𝑐

𝜓𝑖𝜙𝑗𝑑Γ.

The matrix𝐵𝑇 can also be written in a similar way. The friction condition can be written in a weak form∫︁
Γ𝑐

(𝜇ℎ𝑇 − 𝜆ℎ𝑇)�̇�𝑇𝑑Γ ≥ 0 ∀𝜇ℎ𝑇 ∈ Λℎ
𝑇 (F𝜆ℎ𝑁),

where Λℎ
𝑇 (F𝜆ℎ𝑁) is the discrete set of admissible friction stress.

Finally, the expression of the direct nodal contact condition are recovered

𝐾𝑈 = 𝐿+𝐵𝑇
𝑁𝜆𝑁 +𝐵𝑇

𝑇 𝜆𝑇 ,

− 1

𝑟𝛼𝑖
(𝜆𝑖𝑁 − 𝑃]−∞,0](𝜆

𝑖
𝑁 − 𝛼𝑖𝑟((𝐵𝑁𝑈)𝑖 − gap𝑖))) = 0, 𝑖 = 1..𝑁𝑐,

− 1

𝑟𝛼𝑖
(𝜆𝑖𝑇 − 𝑃B(−F𝑃]−∞,0](𝜆

𝑖
𝑁−𝛼𝑖𝑟((𝐵𝑁𝑈)𝑖−gap𝑖)))

(𝜆𝑖𝑇 − 𝛼𝑖𝑟(𝐵𝑇𝑈 −𝐵𝑇𝑈
0)𝑖)) = 0, 𝑖 = 1..𝑁𝑐,

except that now 𝜆𝑖𝑁 and 𝜆𝑖𝑇 are force densities, and 𝛼𝑖 has to be now chosen proportional to 1/ℎ𝑑 such
that the augmentation parameter 𝑟 can still be chosen close to the Young modulus of the elastic body.

Note that without additional stabilization technique (see [HI-RE2010]) an inf-sup condition have to be
satisfied between the finite element of the displacement and the one for the multipliers. This means in
particular that the finite element for the multiplier have to be “less rich” than the one for the displacement.

23.24.4 Weak integral contact condition

The weak integral contact formulation allows not to explicitly describe the discrete set of admissible
stress. See also Generic Nitsche’s method for contact with friction condition. The contact stress (includ-
ing the friction one) is described on a finite element space 𝑊 ℎ on the contact boundary Γ𝑐:

𝜆ℎ ∈𝑊 ℎ =
{︁∑︁

𝜆𝑖𝜓𝑖, 𝜆𝑖 ∈ 𝐼𝑅𝑑
}︁

where 𝑑 is the dimension of the problem and 𝜓𝑖 still the shapes functions on which the contact stress is
developed. Now, given a outward unit vector 𝑛 on the contact boundary Γ𝑐 (usually the normal to the
obstacle), we make the standard decompositions:

𝜆ℎ𝑁 = 𝜆ℎ · 𝑛, 𝜆ℎ𝑇 = 𝜆ℎ − 𝜆ℎ𝑁𝑛, 𝑢ℎ𝑁 = 𝑢ℎ · 𝑛, 𝑢ℎ𝑇 = 𝑢ℎ − 𝑢ℎ𝑁𝑛,

where 𝑢ℎ is the displacement field approximated on a finite element space 𝑉 ℎ. This allows to express
the contact condition in the following way∫︁

Γ𝑐

(𝜆ℎ𝑁 + (𝜆ℎ𝑁 − 𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝))−)𝜇
ℎ
𝑁𝑑Γ = 0 ∀𝜇ℎ ∈𝑊 ℎ,

where 𝑔𝑎𝑝 is a given initial gap in reference configuration, 𝑟 is an augmentation parameter and (·)− :
𝐼𝑅→ 𝐼𝑅+ is the negative part. The friction condition can similarly be written:∫︁

Γ𝑐

(𝜆ℎ𝑇 − 𝑃𝐵(F (𝜆ℎ
𝑁−𝑟(𝑢ℎ

𝑁−𝑔𝑎𝑝))−)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))) · 𝜇ℎ𝑇𝑑Γ = 0 ∀𝜇ℎ ∈𝑊 ℎ,

where 𝐵(𝜌) is the closed ball of center 0 and radius 𝜌 and 𝑃𝐵(𝜌) is the orthogonal projection on it
(By convenyion, the ball reduces to the origin dor 𝜌 ≤ 0). The term 𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇) represent here an

23.24. Small sliding contact with friction bricks 141

User Documentation, Release 5.4.2

approximation of the sliding velocity. The parameter 𝛼 and the field 𝑤ℎ
𝑇 have to be adapted with respect

to the chosen approximation. For instance, if the standard finite difference

(�̇�ℎ𝑇)
𝑛+1 ≈

(𝑢ℎ𝑇)
𝑛+1 − (𝑢ℎ𝑇)

𝑛

𝑑𝑡

is chosen, then one has to take 𝛼 = 1/𝑑𝑡 and 𝑤ℎ
𝑇 = (𝑢ℎ𝑇)

𝑛. Note that due to the symmetry of the
ball, the parameter 𝛼 do not play an important role in the formulation. It can simply be viewed as
a scaling between the augmentation parameter for the contact condition and the one for the friction
condition. Note also that contrarily to the previous formulations of contact, here there is not a strict
independance of the conditions with respect to the augmentation parameter (the independance only
occurs at the continuous level).

GetFEM bricks implement four versions of the contact condition derived from the Alart-Curnier aug-
mented Lagrangian formulation [AL-CU1991]. The first one corresponds to the non-symmetric version.
It consists in solving:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑎(𝑢ℎ, 𝑣ℎ) +

∫︁
Γ𝑐

𝜆ℎ · 𝑣ℎ𝑑Γ = ℓ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉 ℎ,

−1

𝑟

∫︁
Γ𝑐

(𝜆ℎ𝑁 + (𝜆ℎ𝑁 − 𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝))−)𝜇
ℎ
𝑁𝑑Γ

−1

𝑟

∫︁
Γ𝑐

(𝜆ℎ𝑇 − 𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))) · 𝜇ℎ𝑇𝑑Γ = 0 ∀𝜇ℎ ∈𝑊 ℎ,

where 𝑎(·, ·) and ℓ(𝑣) represent the remaining parts of the problem in 𝑢, for instance linear elasticity
and 𝜌 = F (𝜆ℎ𝑁 − 𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝))−. Note that in this case, the mathematical analysis leads to choose a
value for the augmentation parameter of the kind 𝑟 = 𝑟0/𝑟 with 𝑟0 having the dimension of a elasticity
modulus (a classical choice is the value of Young’s modulus). In order to write a Newton iteration, one
has to derive the tangent system. It can be written, reporting only the contact and friction terms and not
the right hand side:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · · −
∫︁
Γ𝑐

𝛿𝜆 · 𝑣𝑑Γ = · · · ∀𝑣ℎ ∈ 𝑉 ℎ,

−1

𝑟

∫︁
Γ𝑐

(1−𝐻(𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)− 𝜆𝑁))𝛿𝜆𝑁
𝜇ℎ𝑁𝑑Γ−

∫︁
Γ𝑐

𝐻(𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)− 𝜆𝑁)𝛿𝑢𝑁𝜇
ℎ
𝑁𝑑Γ

−1

𝑟

∫︁
Γ𝑐

(𝛿𝜆𝑇
−𝐷𝑥𝑃𝐵(𝜌)(𝜆

ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝜆𝑇
) · 𝜇ℎ𝑇𝑑Γ

−
∫︁
Γ𝑐

𝛼𝐷𝑥𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑇 · 𝜇ℎ𝑇𝑑Γ

+

∫︁
Γ𝑐

(F𝐷𝜌𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑁) · 𝜇
ℎ
𝑇𝑑Γ

−
∫︁
Γ𝑐

(
F

𝑟
𝐷𝜌𝑃𝐵(𝜌)(𝜆

ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝜆𝑁
) · 𝜇ℎ𝑇𝑑Γ = · · · ∀𝜇ℎ ∈𝑊 ℎ,

where 𝐻(·) is the Heaviside function (0 for a negative argument and 1 for a non-negative argument),
𝐷𝑥𝑃𝐵(𝜌)(𝑥) and𝐷𝜌𝑃𝐵(𝜌)(𝑥) are the derivatives of the projection on𝐵(𝜌) (assumed to vanish for 𝜌 ≤ 0)
and 𝛿𝜆 and 𝛿𝑢 are the unknown corresponding to the tangent problem.

The second version corresponds to the “symmetric” version. It is in fact symmetric in the frictionless

142 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

case only (because in this case it directly derives from the augmented Lagrangian formulation). It reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎(𝑢ℎ, 𝑣ℎ) +

∫︁
Γ𝑐

(𝜆ℎ𝑁 − 𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝))−𝑣
ℎ
𝑁𝑑Γ

−
∫︁
Γ𝑐

𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))) · 𝑣ℎ𝑇𝑑Γ = ℓ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉 ℎ,

−1

𝑟

∫︁
Γ𝑐

(𝜆ℎ𝑁 + (𝜆ℎ𝑁 − 𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝))−)𝜇
ℎ
𝑁𝑑Γ

−1

𝑟

∫︁
Γ𝑐

(𝜆ℎ𝑇 − 𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))) · 𝜇ℎ𝑇𝑑Γ = 0 ∀𝜇ℎ ∈𝑊 ℎ,

and the tangent system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·+
∫︁
Γ𝑐

𝑟𝐻(𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)− 𝜆𝑁)𝛿𝑢𝑁 𝑣𝑁 −𝐻(𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)− 𝜆𝑁)𝛿𝜆𝑁
𝑣𝑁𝑑Γ

+

∫︁
Γ𝑐

𝑟𝛼𝐷𝑥𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑇 · 𝑣ℎ𝑇𝑑Γ

−
∫︁
Γ𝑐

𝐷𝑥𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝜆𝑇
· 𝑣ℎ𝑇𝑑Γ

−
∫︁
Γ𝑐

(𝑟F𝐷𝜌𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑁) · 𝑣
ℎ
𝑇𝑑Γ

−
∫︁
Γ𝑐

(F𝐷𝜌𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝜆𝑁
) · 𝑣ℎ𝑇𝑑Γ = · · · ∀𝑣ℎ ∈ 𝑉 ℎ,

−1

𝑟

∫︁
Γ𝑐

(1−𝐻(𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)− 𝜆𝑁))𝛿𝜆𝑁
𝜇ℎ𝑁𝑑Γ−

∫︁
Γ𝑐

𝐻(𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)− 𝜆𝑁)𝛿𝑢𝑁𝜇
ℎ
𝑁𝑑Γ

−1

𝑟

∫︁
Γ𝑐

(𝛿𝜆𝑇
−𝐷𝑥𝑃𝐵(𝜌)(𝜆

ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝜆𝑇
) · 𝜇ℎ𝑇𝑑Γ

−
∫︁
Γ𝑐

𝛼𝐷𝑥𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑇 · 𝜇ℎ𝑇𝑑Γ

+

∫︁
Γ𝑐

(F𝐷𝜌𝑃𝐵(𝜌)(𝜆
ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑁) · 𝜇
ℎ
𝑇𝑑Γ

−
∫︁
Γ𝑐

(
F

𝑟
𝐷𝜌𝑃𝐵(𝜌)(𝜆

ℎ
𝑇 − 𝑟𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇))𝛿𝜆𝑁
) · 𝜇ℎ𝑇𝑑Γ = · · · ∀𝜇ℎ ∈𝑊 ℎ,

still with 𝜌 = F (𝜆ℎ𝑁 − 𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝))−.

The third version corresponds to a penalized contact and friction condition. It does not require the use
of a multiplier. In this version, the parameter 𝑟 is a penalization parameter and as to be large enough
to perform a good approximation of the non-penetration and the Coulomb friction conditions. The
formulation reads:⎧⎪⎪⎨⎪⎪⎩

𝑎(𝑢ℎ, 𝑣ℎ) +

∫︁
Γ𝑐

𝑟(𝑢ℎ𝑁 − 𝑔𝑎𝑝)+𝑣
ℎ
𝑁𝑑Γ

+

∫︁
Γ𝑐

𝑃𝐵(F𝑟(𝑢ℎ
𝑁−𝑔𝑎𝑝)+)(𝑟𝛼(𝑢

ℎ
𝑇 − 𝑤ℎ

𝑇)) · 𝑣ℎ𝑇𝑑Γ = ℓ(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉 ℎ,

and the tangent system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

· · ·+
∫︁
Γ𝑐

𝑟𝐻(𝑢ℎ𝑁 − 𝑔𝑎𝑝)𝛿𝑢𝑁 𝑣𝑁𝑑Γ

−
∫︁
Γ𝑐

𝑟𝛼𝐷𝑥𝑃𝐵(F𝑟(𝑢ℎ
𝑁−𝑔𝑎𝑝)+)(𝑟𝛼(𝑢

ℎ
𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑇 · 𝑣ℎ𝑇𝑑Γ

+

∫︁
Γ𝑐

(𝑟F𝐻(𝑢ℎ𝑁 − 𝑔𝑎𝑝)𝐷𝜌𝑃𝐵(F𝑟(𝑢ℎ
𝑁−𝑔𝑎𝑝)+)(𝑟𝛼(𝑢

ℎ
𝑇 − 𝑤ℎ

𝑇))𝛿𝑢𝑁) · 𝑣
ℎ
𝑇𝑑Γ = · · · ∀𝑣ℎ ∈ 𝑉 ℎ,

23.24. Small sliding contact with friction bricks 143

User Documentation, Release 5.4.2

23.24.5 Numerical continuation

In addition, GetFEM develops a method of numerical continuation for finding numerical solutions of
discretized evolutionary contact problems based on the weak integral contact condition (see Numerical
continuation and bifurcation for a general introduction). For this purpose, a parameter-dependent sliding
velocity may be added to the friction condition so that it becomes:∫︁

Γ𝑐

(︁
𝜆ℎ𝑇 − 𝑃𝐵(−F𝜆ℎ

𝑁)

(︀
𝜆ℎ𝑇 − 𝑟

(︀
𝛼(𝑢ℎ𝑇 − 𝑤ℎ

𝑇) + (1− 𝛾)𝑧ℎ𝑇
)︀)︀)︁

· 𝜇ℎ𝑇𝑑Γ = 0 ∀𝜇ℎ ∈𝑊 ℎ.

Here, 𝛾 is a parameter and 𝑧ℎ𝑇 is an initial sliding velocity. It is worth mentioning that if one chooses

𝛼 =
1

𝑑𝑡
, 𝑤ℎ

𝑇 = (𝑢ℎ𝑇)
𝑛, 𝑧ℎ𝑇 =

(𝑢ℎ𝑇)
𝑛 − (𝑢ℎ𝑇)

𝑛−1

𝑑𝑡
,

then he recovers the standard friction condition at time 𝑡𝑛 and 𝑡𝑛+1 for 𝛾 equal to 0 and 1, respectively.

23.24.6 Friction law

Apart from pure Coulomb friction 𝜌 = F |𝜎𝑛|, the weak integral contact framework in GetFEM also
supports a more generic friction law description:

𝜌 =

{︂
𝜏𝑎𝑑ℎ + F |𝜎𝑛| if 𝜏𝑎𝑑ℎ + F |𝜎𝑛| < 𝜏𝑡𝑟𝑒𝑠𝑐𝑎
𝜏𝑡𝑟𝑒𝑠𝑐𝑎 otherwise

In this equation 𝜌 is the admissible friction stress for a given normal stress 𝜎𝑛, F is the coefficient
of friction, 𝜏𝑎𝑑ℎ is an adhesional (load-independent) shear stress and 𝜏𝑡𝑟𝑒𝑠𝑐𝑎 is a maximum shear stress
limit.

23.24.7 Add a contact with or without friction to a model

23.24.8 Frictionless basic contact brick

In order to add a frictionless contact brick you call the model object method:

getfem::add_basic_contact_brick
(md, varname_u, multname_n, dataname_r, BN, dataname_gap, dataname_

→˓alpha, aug_version);

This function adds a frictionless contact brick on varname_u thanks to a multiplier variable
multname_n. If 𝑈 is the vector of degrees of freedom on which the unilateral constraint is applied,
the matrix 𝐵𝑁 have to be such that this condition is defined by 𝐵𝑁𝑈 ≤ 0. The constraint is prescribed
thank to a multiplier multname_n whose dimension should be equal to the number of lines of 𝐵𝑁 .
The variable dataname_r is the name of the augmentation parameter 𝑟 should be chosen in a range

144 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

of acceptable values. dataname_gap is an optional parameter representing the initial gap. It can be a
single value or a vector of value. dataname_alpha is an optional homogenization parameter for the
augmentation parameter.

The parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric method based on augmented
multipliers.

Note that is possible to change the basic contact matrix 𝐵𝑁 by using:

getfem::contact_brick_set_BN(md, indbrick);

23.24.9 Basic contact brick with friction

getfem::add_basic_contact_brick (md, varname_u, multname_n, multname_t,
dataname_r, BN, dataname_friction_coeff, dataname_gap, dataname_alpha,
aug_version);

This function adds a contact brick with friction on varname_u thanks to two multiplier variables
multname_n and multname_t. If U is the vector of degrees of freedom on which the condition is
applied, the matrix B_N has to be such that the contact condition is defined by 𝐵𝑁𝑈 ≤ 𝑔𝑎𝑝 and B_T
have to be such that the relative tangential displacement is 𝐵𝑇𝑈 . The matrix B_T should have as many
rows as B_N multiplied by 𝑑− 1 where 𝑑 is the domain dimension. The contact condition is prescribed
thank to a multiplier multname_n whose dimension should be equal to the number of rows of B_N
and the friction condition by a multiplier multname_t whose size should be the number of rows of
B_T. The parameter dataname_friction_coeff describes the friction coefficient. It could be a
scalar or a vector describing the coefficient on each contact condition. The augmentation parameter r
should be chosen in a range of acceptable values (see Getfem user documentation). dataname_gap
is an optional parameter representing the initial gap. It can be a single value or a vector of value.
dataname_alpha is an optional homogenization parameter for the augmentation parameter.

The parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric method based on augmented
multipliers and 4 for the unsymmetric method based on augmented multipliers with De Saxce projection.

Note that is possible to change the basic contact matrices 𝐵𝑁 and 𝐵𝑇 by using:

getfem::contact_brick_set_BN(md, indbrick);
getfem::contact_brick_set_BT(md, indbrick);

23.24.10 Frictionless nodal contact with a rigid obstacle brick

getfem::add_nodal_contact_with_rigid_obstacle_brick (md, mim, varname_u, mult-
name_n, dataname_r, region, obstacle, aug_version);

This function adds a direct nodal frictionless contact condition with a rigid obstacle to the model. The
condition is applied on the variable varname_u on the boundary corresponding to region. The rigid
obstacle should be described with the string obstacle being a signed distance to the obstacle. This
string should be an expression where the coordinates are ‘x’, ‘y’ in 2D and ‘x’, ‘y’, ‘z’ in 3D. For
instance, if the rigid obstacle correspond to 𝑧 ≤ 0, the corresponding signed distance will be simply
‘z’. multname_n should be a fixed size variable whose size is the number of degrees of freedom on
boundary region. It represents the contact equivalent nodal forces. The augmentation parameter r
should be chosen in a range of acceptable values (close to the Young modulus of the elastic body, see

23.24. Small sliding contact with friction bricks 145

User Documentation, Release 5.4.2

Getfem user documentation). 1 for the non-symmetric Alart-Curnier augmented Lagrangian, 2 for the
symmetric one, 3 for the unsymmetric method based on augmented multipliers.

23.24.11 Nodal contact with a rigid obstacle brick with friction

getfem::add_nodal_contact_with_rigid_obstacle_brick (md, mim, varname_u, mult-
name_n, multname_t, dataname_r, dataname_friction_coeff, region, obstacle,
aug_version);

This function adds a direct nodal contact with friction condition with a rigid obstacle to the model.
The condition is applied on the variable varname_u on the boundary corresponding to region. The
rigid obstacle should be described with the string obstacle being a signed distance to the obstacle.
This string should be an expression where the coordinates are ‘x’, ‘y’ in 2D and ‘x’, ‘y’, ‘z’ in 3D. For
instance, if the rigid obstacle correspond to 𝑧 ≤ 0, the corresponding signed distance will be simply
‘z’. multname_n should be a fixed size variable whose size is the number of degrees of freedom on
boundary region. It represents the contact equivalent nodal forces. multname_t should be a fixed
size variable whose size is the number of degrees of freedom on boundary region multiplied by 𝑑− 1
where 𝑑 is the domain dimension. It represents the friction equivalent nodal forces. The augmentation
parameter r should be chosen in a range of acceptable values (close to the Young modulus of the elastic
body, see Getfem user documentation). dataname_friction_coeff is the friction coefficient. It
could be a scalar or a vector of values representing the friction coefficient on each contact node.

The parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric method based on augmented
multipliers and 4 for the unsymmetric method based on augmented multipliers with De Saxce projection.

23.24.12 Frictionless nodal contact between non-matching meshes brick

getfem::add_nodal_contact_between_nonmatching_meshes_brick (md, mim1, mim2,
varname_u1, varname_u2, multname_n, dataname_r, rg1, rg2, slave1=true,
slave2=false, aug_version=1);

This function adds a frictionless contact condition between two faces of one or two elastic bodies. The
condition is applied on the variable varname_u or the variables varname_u1 and varname_u2 depending
if a single or two distinct displacement fields are given. Vectors rg1 and rg2 contain pairs of regions
expected to come in contact with each other. In case of a single region per side, rg1 and rg2 can be given
as normal integers. In the single displacement variable case the regions defined in both rg1 and rg2
refer to the variable varname_u. In the case of two displacement variables, rg1 refers to varname_u1
and rg2 refers to varname_u2. multname_n should be a fixed size variable whose size is the number
of degrees of freedom on those regions among the ones defined in rg1 and rg2 which are characterized
as “slaves”. It represents the contact equivalent nodal forces. The augmentation parameter r should be
chosen in a range of acceptable values (close to the Young modulus of the elastic body, see Getfem user
documentation). The optional parameters slave1 and slave2 declare if the regions defined in rg1 and
rg2 are correspondingly considered as “slaves”. By default slave1 is true and slave2 is false, i.e. rg1
contains the slave surfaces, while rg2 the master surfaces. Preferably only one of slave1 and slave2 is
set to true.

The parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric method with augmented multi-
plier.

146 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

Basically, this brick computes the matrix 𝐵𝑁 and the vectors gap and alpha and calls the basic contact
brick.

23.24.13 Nodal contact between non-matching meshes brick with friction

getfem::add_nodal_contact_between_nonmatching_meshes_brick

(md, mim1, mim2, varname_u1, varname_u2, multname_n, multname_t,
dataname_r, dataname_friction_coeff, rg1, rg2, slave1=true, slave2=false,
aug_version=1);

This function adds a contact with friction condition between two faces of one or two elastic bodies. The
condition is applied on the variable varname_u or the variables varname_u1 and varname_u2 depending
if a single or two distinct displacement fields are given. Vectors rg1 and rg2 contain pairs of regions
expected to come in contact with each other. In case of a single region per side, rg1 and rg2 can be given
as normal integers. In the single displacement variable case the regions defined in both rg1 and rg2 refer
to the variable varname_u. In the case of two displacement variables, rg1 refers to varname_u1 and rg2
refers to varname_u2. multname_n should be a fixed size variable whose size is the number of degrees
of freedom on those regions among the ones defined in rg1 and rg2 which are characterized as “slaves”.
It represents the contact equivalent nodal normal forces. multname_t should be a fixed size variable
whose size corresponds to the size of multname_n multiplied by qdim - 1 . It represents the contact
equivalent nodal tangent (frictional) forces. The augmentation parameter r should be chosen in a range
of acceptable values (close to the Young modulus of the elastic body, see Getfem user documentation).
The friction coefficient stored in the parameter friction_coeff is either a single value or a vector of the
same size as multname_n. The optional parameters slave1 and slave2 declare if the regions defined in
rg1 and rg2 are correspondingly considered as “slaves”. By default slave1 is true and slave2 is false, i.e.
rg1 contains the slave surfaces, while rg2 the master surfaces. Preferably only one of slave1 and slave2
is set to true.

The parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric method with augmented multi-
plier and 4 for the unsymmetric method with augmented multiplier and De Saxce projection.

Basically, this brick computes the matrices 𝐵𝑁 and 𝐵𝑇 as well the vectors gap and alpha and calls the
basic contact brick.

23.24.14 Hughes stabilized frictionless contact condition

In order to add a Hughes stabilized frictionless contact brick you call the model object method:

getfem::add_Hughes_stab_basic_contact_brick
(md, varname_u, multname_n, dataname_r, BN, DN, dataname_gap, dataname_

→˓alpha, aug_version);

This function adds a Hughes stabilized frictionless contact brick on varname_u thanks to a multi-
plier variable multname_n. If we take 𝑈 is the vector of degrees of freedom on which the unilateral
constraint is applied, and 𝜆 the multiplier Vector of contact force. Then Hughes stabilized friction-
less contact condition is defined by the matrix 𝐵𝑁 and 𝐷𝑁 have to be such that this condition is de-
fined by 𝐵𝑁𝑈 − 𝐷𝑁𝜆 ≤ 0. Where 𝐷𝑁 is the mass matrix relative to stabilized term. The variable
dataname_r is the name of the augmentation parameter 𝑟 should be chosen in a range of acceptable
values. dataname_gap is an optional parameter representing the initial gap. It can be a single value or
a vector of value. dataname_alpha is an optional homogenization parameter for the augmentation
parameter.

23.24. Small sliding contact with friction bricks 147

User Documentation, Release 5.4.2

The parameter aug_version indicates the augmentation strategy : 1 for the non-symmetric Alart-Curnier
augmented Lagrangian, 2 for the symmetric one, 3 for the unsymmetric method based on augmented
multipliers.

Note that the matrix 𝐷𝑁 is a sum of the basic contact term and the Hughes stabilised term. You can
change it with:

getfem::contact_brick_set_DN(md, indbrick);

23.24.15 Frictionless integral contact with a rigid obstacle brick

getfem::add_integral_contact_with_rigid_obstacle_brick
(md, mim, varname_u, multname_n, dataname_obs, dataname_r, region,

→˓option = 1);

This function adds a frictionless contact condition with a rigid obstacle to the model, which is defined
in an integral way. It is the direct approximation of an augmented Lagrangian formulation defined
at the continuous level. The advantage should be a better scalability: the number of Newton itera-
tions should be more or less independent of the mesh size. The condition is applied on the variable
varname_u on the boundary corresponding to region. The rigid obstacle should be described with
the data dataname_obstacle being a signed distance to the obstacle (interpolated on a finite element
method). multname_n should be a fem variable representing the contact stress. An inf-sup condition
between multname_n and varname_u is required. The augmentation parameter dataname_r
should be chosen in a range of acceptable values.

Possible values for option is 1 for the non-symmetric Alart-Curnier augmented Lagrangian method, 2
for the symmetric one, 3 for the non-symmetric Alart-Curnier method with an additional augmentation
and 4 for a new unsymmetric method. The default value is 1.

mim represents of course the integration method. Note that it should be accurate enough to integrate
efficiently the nonlinear terms involved.

23.24.16 Integral contact with a rigid obstacle brick with friction

getfem::add_integral_contact_with_rigid_obstacle_brick
(md, mim, varname_u, multname_n, dataname_obs, dataname_r,
dataname_friction_coeffs, region, option = 1, dataname_alpha = "",
dataname_wt = "", dataname_gamma = "", dataname_vt = "");

This function adds a contact with friction condition with a rigid obstacle to the model, which is de-
fined in an integral way. It is the direct approximation of an augmented Lagrangian formulation defined
at the continuous level. The advantage should be a better scalability: the number of Newton itera-
tions should be more or less independent of the mesh size. The condition is applied on the variable
varname_u on the boundary corresponding to region. The rigid obstacle should be described with
the data dataname_obstacle being a signed distance to the obstacle (interpolated on a finite element
method). multname_n should be a fem variable representing the contact stress. An inf-sup condition
between multname_n and varname_u is required. The augmentation parameter dataname_r
should be chosen in a range of acceptable values.

The parameter dataname_friction_coeffs contains the Coulomb friction coefficient and optionally an
adhesional shear stress threshold and the tresca limit shear stress. For constant coefficients its size is

148 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

from 1 to 3. For coefficients described on a finite element method, this vector contains a number of
single values, value pairs or triplets equal to the number of the corresponding mesh_fem’s basic dofs.

Possible values for option is 1 for the non-symmetric Alart-Curnier augmented Lagrangian method, 2
for the symmetric one, 3 for the non-symmetric Alart-Curnier method with an additional augmentation
and 4 for a new unsymmetric method. The default value is 1. Option 4, assumes pure Coulomb friction
and ignores any adhesional stress and tresca limit coefficients.

dataname_alpha and dataname_wt are optional parameters to solve evolutionary friction prob-
lems. dataname_gamma and dataname_vt denote optional data for adding a parameter-dependent
sliding velocity to the friction condition. mim represents of course the integration method. Note that it
should be accurate enough to integrate efficiently the nonlinear terms involved.

23.24.17 Frictionless integral contact between non-matching meshes brick

getfem::add_integral_contact_between_nonmatching_meshes_brick
(md, mim, varname_u1, varname_u2, multname_n, dataname_r,
region1, region2, option = 1);

This function adds a frictionless contact condition between nonmatching meshes to the model, which
is defined in an integral way. It is the direct approximation of an augmented Lagrangian formula-
tion defined at the continuous level. The advantage should be a better scalability: the number of
Newton iterations should be more or less independent of the mesh size. The condition is applied on
the variables varname_u1 and varname_u2 on the boundaries corresponding to region1 and
region2. multname_n should be a fem variable representing the contact stress. An inf-sup con-
dition between multname_n and varname_u1 and varname_u2 is required. The augmentation
parameter dataname_r should be chosen in a range of acceptable values.

Possible values for option is 1 for the non-symmetric Alart-Curnier augmented Lagrangian method, 2
for the symmetric one, 3 for the non-symmetric Alart-Curnier method with an additional augmentation
and 4 for a new unsymmetric method. The default value is 1.

mim represents of course the integration method. Note that it should be accurate enough to integrate
efficiently the nonlinear terms involved.

23.24.18 Integral contact between non-matching meshes brick with friction

getfem::add_integral_contact_between_nonmatching_meshes_brick
(md, mim, varname_u1, varname_u2, multname, dataname_r,
dataname_friction_coeffs, region1, region2, option = 1,
dataname_alpha = "", dataname_wt1 = "", dataname_wt2 = "");

This function adds a contact with friction condition between nonmatching meshes to the model. This
brick adds a contact which is defined in an integral way. It is the direct approximation of an augmented
Lagrangian formulation defined at the continuous level. The advantage should be a better scalability:
the number of Newton iterations should be more or less independent of the mesh size. The condi-
tion is applied on the variables varname_u1 and varname_u2 on the boundaries corresponding to
region1 and region2. multname should be a fem variable representing the contact and friction
stress. An inf-sup condition between multname and varname_u1 and varname_u2 is required.
The augmentation parameter dataname_r should be chosen in a range of acceptable values.

The parameter dataname_friction_coeffs contains the Coulomb friction coefficient and optionally an
adhesional shear stress threshold and the tresca limit shear stress. For constant coefficients its size is from

23.24. Small sliding contact with friction bricks 149

User Documentation, Release 5.4.2

1 to 3. For coefficients described on a finite element method on the same mesh as varname_u1, this
vector contains a number of single values, value pairs or triplets equal to the number of the corresponding
mesh_fem’s basic dofs.

Possible values for option is 1 for the non-symmetric Alart-Curnier augmented Lagrangian method, 2
for the symmetric one, 3 for the non-symmetric Alart-Curnier method with an additional augmentation
and 4 for a new unsymmetric method. The default value is 1. dataname_alpha, dataname_wt1
and dataname_wt2 are optional parameters to solve evolutionary friction problems. mim represents
the integration method on the same mesh as varname_u1. Note that it should be accurate enough to
integrate efficiently the nonlinear terms involved.

23.24.19 Frictionless penalized contact with a rigid obstacle brick

getfem::add_penalized_contact_with_rigid_obstacle_brick
(md, mim, varname_u, dataname_obs, dataname_r, region,
option = 1, dataname_lambda_n = "");

This function adds a frictionless penalized contact condition with a rigid obstacle to the model. The
condition is applied on the variable varname_u on the boundary corresponding to region. The
rigid obstacle should be described with the data dataname_obstacle being a signed distance to the
obstacle (interpolated on a finite element method). The penalization parameter dataname_r should
be chosen large enough to prescribe an approximate non-penetration condition but not too large not to
deteriorate too much the conditioning of the tangent system. dataname_n is an optional parameter
used if option is 2. In that case, the penalization term is shifted by lambda_n (this allows the use of an
Uzawa algorithm on the corresponding augmented dLagrangian formulation)

23.24.20 Penalized contact with a rigid obstacle brick with friction

getfem::add_penalized_contact_with_rigid_obstacle_brick
(md, mim, varname_u, dataname_obs, dataname_r, dataname_friction_

→˓coeffs,
region, option = 1, dataname_lambda = "", dataname_alpha = "",
dataname_wt = "");

This function adds a penalized contact condition with Coulomb friction with a rigid obstacle to the
model. The condition is applied on the variable varname_u on the boundary corresponding to
region. The rigid obstacle should be described with the data dataname_obstacle being a signed dis-
tance to the obstacle (interpolated on a finite element method).

The parameter dataname_friction_coeffs contains the Coulomb friction coefficient and optionally an
adhesional shear stress threshold and the tresca limit shear stress. For constant coefficients its size is
from 1 to 3. For coefficients described on a finite element method, this vector contains a number of
single values, value pairs or triplets equal to the number of the corresponding mesh_fem’s basic dofs.

The penalization parameter dataname_r should be chosen large enough to prescribe approximate non-
penetration and friction conditions but not too large not to deteriorate too much the conditioning of the
tangent system. dataname_lambda is an optional parameter used if option is 2. In that case, the
penalization term is shifted by lambda (this allows the use of an Uzawa algorithm on the corresponding
augmented Lagrangian formulation). dataname_alpha and dataname_wt are optional parameters
to solve evolutionary friction problems.

150 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

23.24.21 Frictionless penalized contact between non-matching meshes brick

getfem::add_penalized_contact_between_nonmatching_meshes_brick
(md, mim, varname_u1, varname_u2, dataname_r,
region1, region2, option = 1, dataname_lambda_n = "");

This function adds a penalized contact frictionless condition between nonmatching meshes to
the model. The condition is applied on the variables varname_u1 and varname_u2
on the boundaries corresponding to region1` and ``region2`. The penalization
parameter ``dataname_r should be chosen large enough to prescribe an approximate non-
penetration condition but not too large not to deteriorate too much the conditionning of the tangent
system. dataname_n is an optional parameter used if option is 2. In that case, the penalization term
is shifted by lambda_n (this allows the use of an Uzawa algorithm on the corresponding augmented
Lagrangian formulation)

23.24.22 Penalized contact between non-matching meshes brick with friction

getfem::add_penalized_contact_between_nonmatching_meshes_brick
(md, mim, varname_u1, varname_u2, dataname_r, dataname_friction_coeffs,
region1, region2, option = 1, dataname_lambda = "",
dataname_alpha = "", dataname_wt1 = "", dataname_wt2 = "");

This function adds a penalized contact condition with Coulomb friction between nonmatching
meshes to the model. The condition is applied on the variables varname_u1 and varname_u2
on the boundaries corresponding to region1` and ``region2`. The penalization
parameter ``dataname_r should be chosen large enough to prescribe an approximate non-
penetration condition but not too large not to deteriorate too much the conditionning of the tangent
system.

The parameter dataname_friction_coeffs contains the Coulomb friction coefficient and optionally an
adhesional shear stress threshold and the tresca limit shear stress. For constant coefficients its size is
from 1 to 3. For coefficients described on a finite element method on the same mesh as varname_u1, this
vector contains a number of single values, value pairs or triplets equal to the number of the corresponding
mesh_fem’s basic dofs.

dataname_lambda is an optional parameter used if option is 2. In that case, the penalization
term is shifted by lambda (this allows the use of an Uzawa algorithm on the corresponding augmented
Lagrangian formulation) dataname_alpha, dataname_wt1 and dataname_wt2 are optional
parameters to solve evolutionary friction problems. mim represents the integration method on the same
mesh as varname_u1. Note that it should be accurate enough to integrate efficiently the nonlinear
terms involved.

23.25 Large sliding/large deformation contact with friction bricks

The basic tools to deal with large sliding/large deformation contact of deformable structures are acces-
sible in GWFL (the generic weak form language). Some interpolate transformations (see Interpolate
transformations) are defined to perform the contact detection and allow to integrate from a contacct
bondary to the opposite contact boundary. Some other useful tools such as the unit normal vector in the
real configuration and projections to take into account contact with Coulomb friction are also defined as
operators in GWFL.

23.25. Large sliding/large deformation contact with friction bricks 151

User Documentation, Release 5.4.2

Of course, the computational cost of large sliding/large deformation contact algorithms is greatly higher
than small sliding-small deformation ones.

23.25.1 Raytracing interpolate transformation

In order to incorporate the contact detection in the high-level generic assembly, a specific interpolate
transformation has been defined (see Interpolate transformations for more explanations on interpolate
transformations). It is based on a raytracing contact detection has described in [KO-RE2014] and uses
the criteria described below. The interpolate transformation stores the different potential contact sur-
faces. On most of methods, potential contact surface are classified into two categories: master and slave
surface (see figure).

The slave surface is the “contactor” and the master one the “target”. Rigid obstacle are also consid-
ered. They are always master surfaces. The basic rule is that the contact is considered between a slave
surface and a master one. However, the multi-contact frame object and the GetFEM bricks allow multi-
contact situations, including contact between two master surfaces, self-contact of a master surface and
an arbitrary number of slave and master surfaces.

Basically, in order to detect the contact pairs, Gauss points or f.e.m. nodes of slave surfaces are projected
on master surfaces (see figure). If self-contact is considered, Gauss points or f.e.m. nodes of master
surface are also projected on master surfaces.

The addition of a raytracing transformation to a model:

void add_raytracing_transformation(model &md, const std::string &transname,
scalar_type d)

where transname is a name given to the transformation which allows to refer to it in GWFL and d is
the release distance (see above).

152 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

The raytracing transformation is added without any slave or master contact boundary. The following
functions allows to add some boundaries to the transformation:

add_master_contact_boundary_to_raytracing_transformation(model &md,
const std::string &transname, const mesh &m,
const std::string &dispname, size_type region)

add_slave_contact_boundary_to_raytracing_transformation(model &md,
const std::string &transname, const mesh &m,
const std::string &dispname, size_type region)

where dispname is the variable name which represent the displacement on that contact boundary. The
difference between master and slave contact boundary is that the contact detection is to be performed
starting from a slave or master boundary toward a master boundary. The contact detection is not per-
formed toward a slave boundary. Consequently, only the influence boxes of the elements of the master
surfaces are computed and stored.

It is also possible to add a rigid obstacle (considered as a master surface) thanks to the function:

add_rigid_obstacle_to_raytracing_transformation(model &md,
const std::string &transname,
const std::string &expr, size_type N)

where expr is the expression of a signed distance to the obstacle using the syntax of GWFL (X being the
current position, X(0), X(1) . . . the corresponding components). For instance an expression X(0) +
5 will correspond to a flat obstacle lying on the right of the position -5 of the first coordinate. Be aware
that the expression have to be close to a signed distance, which in particular means that the gradient
norm have to be close to 1.

In order to distinguish between non-contact situations and the occurence of a contact with another de-
formable body or with a rigid obstacle, the transformation returns an integer identifier which can be used
by the Interpolate_filter command of GWFL (see Interpolate transformations). The different values:

• 0 : no contact found on this Gauss point

• 1 : contact occurs on this Gauss point with a deformable body

• 2 : contact occurs on this Gauss point with a rigid obstacle.

such that it is possible to differentiate the treatment of these three cases using:

Interpolate_filter(transname, expr1, 0)
Interpolate_filter(transname, expr2, 1)
Interpolate_filter(transname, expr3, 2)

in GWFL, where expr1, expr2 and expr3 correspond to the different terms to
be computed. The matlab interface demo program /interface/tests/matlab/
demo_large_sliding_contact.m presents an example of use.

Note that the transformation could also be directly used with a ga_workspace object if model object are
not used. See getfem/getfem_contact_and_friction_common.h for more details. Note
also that in the framework of the model object, a interfaced use of this transformation is allowed by the
model bricks described below.

23.25. Large sliding/large deformation contact with friction bricks 153

User Documentation, Release 5.4.2

23.25.2 The contact pair detection algorithm

A contact pair is formed by a point of a slave (or master in case of self-contact) surface and a projected
point on the nearest master surface (or rigid obstacle). The Algorithm used is summerized in figure

It is impossible to distinguish without fail between valid and invalid contact situations without a global
topological criterion (such as in [Pantz2008]), a fortiori for self-contact detection. However, this kind
of criterion can be very costly to implement. Thus, one generally implements some simple heuristic
criteria which cannot cover all the possible cases. We present such a set of criteria here. They are of
course perfectible and subject to change. First, in figure one can see a certain number of situations of
valid or invalid contact that criteria have to distinguish.

Some details on the algorithm:

• Computation of influence boxes. The influence box of an element is just an offset to its bounding
box at a distance equal to the release distance. If this strategy is used, the release distance should
not be too large compared to the element size. Otherwise, a point would correspond to a a large
number of influence box which can considerably slow down the search of contact pairs. The
influence boxes are stored in a region tree object in order to find the boxes containing a point with
an algorithm having a mean complexity in 𝑂(𝑙𝑜𝑔(𝑁)).

154 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

23.25. Large sliding/large deformation contact with friction bricks 155

User Documentation, Release 5.4.2

156 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

• What is a potential contact pair. A potential contact pair is a pair slave point - master element
face which will be investigated. The projection of the slave point on the master surface will be
done and criteria will be applied.

• Projection algorithm. The projection of the slave point onto a master element face is done
by a parametrization of the surface on the reference element via the geometric transformation
and the displacement field. During the projection, no constraint is applied to remain inside the
element face, which means that the element face is prolongated analytically. The projection is
performed by minimizing the distance between the slave point and the projected one using the
parametrization and Newton’s and/or BFGS algorithms. If raytrace is set to true, then no
projection is computed. Instead a ray tracing from the point x in the direction of the unit normal
vector at x to find y. This means the reverse of the usual situation (x will be the projection of y).

The list of criteria:

• Criterion 1: the unit normal cone/vector should be compatible, and the two points do not
share the same element. Two unit normal vector are compatible if their scalar product are non-
positive. In case of f.e.m. node contact, since a fem node is shared generally by several elements,
a normal cone constituted of the unit normal vectors of each element is considered. Two normal
cones are compatible if at least one pair of unit normal vector have their scalar product non-
positive. In order to simplify the computation, a normal cone is reduced to a mean normal vector
if the solid angle of the normal cone is less than cut_angle a parameter of the multi-contact
frame object. This criterion allows to treat cases (B) and (K1).

• Criterion 2: the contact pair is eliminated when the search of the projection/raytrace point
do not converge. When Newton’s algorithms (and BFGS one for projection) used to compute the
projection/raytrace of the slave point on the master element surface fails to converge, the pair is
not considered. A warning is generated.

• Criterion 3 : the projected point should be inside the element. The slave point is projected on
the surface of the master element without the constraint to remain inside the face (which means
that the face is prolongated). If the orthogonal projection is outside the face, the pair is not
considered. This is the present state, however, to treat case (J3) an aditional treatment will have to
be considered (projection on the face with the constraint to remain inside it and test of the normal
cone at this point) This criterion allows to treat cases (F2), (K2), (M1) and (M2).

• Criterion 4 : the release distance is applied. If the distance between the slave point and its pro-
jection on the master surface is greater than the release distance, the contact pair is not considered.
This can treat cases (C), (E), (F1), (G), (H) if the release distance is adapted and the deformation
not too important.

• Criterion 5 : comparison with rigid obstacles. If the signed distance between the slave point and
its projection on the master surface is greater than the one with a rigid obstacle (considering that
the release distance is also first applied to rigid obstacle) then the contact pair is not considered.

• Criterion 6 : for self-contact only : apply a test on unit normals in reference configuration.
In case of self contact, a contact pair is eliminated when the slave point and the master element
belong to the same mesh and if the slave point is behind the master surface (with respect to its unit
outward normal vector) and not four times farther than the release distance. This can treat cases
(A), (C), (D), (H).

• Criterion 7 : smallest signed distance on contact pairs. Between the retained contact pairs (or
rigid obstacle) the one corresponding to the smallest signed distance is retained.

23.25. Large sliding/large deformation contact with friction bricks 157

User Documentation, Release 5.4.2

Nodal contact brick with projection

Notations: Ω ⊂ IRd denotes the reference configuration of a deformable body, possibly constituted
by several unconnected parts (see figure). Ω𝑡 is the deformed configuration and 𝜙ℎ : Ω → Ω𝑡 is the
approximated deformation on a finite element space 𝑉 ℎ. The displacement 𝑢ℎ : Ω → IRd is defined
by 𝜙ℎ(𝑋) = 𝑋 + 𝑢ℎ(𝑋). A generic point of the reference configuration Ω is denoted by 𝑋 while
the corresponding point of the deformed configuration is denoted by 𝑥 = 𝜙ℎ(𝑋). Γ𝑆 denotes a slave
boundary of Ω and Γ𝑀 a master one. The corresponding boundaries on the deformed configuration are
Γ𝑆
𝑡 and Γ𝑀

𝑡 , respectively. The outward unit normal vector to the boundary (in the deformed configura-
tion) at a point 𝑥 = 𝜙ℎ(𝑋) of that boundary is denoted by 𝑛𝑥. Finally, the notation 𝛿𝐴[𝐵] denotes the
directional derivative of the quantity𝐴 with respect to the deformation and in the direction𝐵. Similarly,
The notation 𝛿2𝐴[𝐵,𝐶] is the second derivative in the directions 𝐵 and 𝐶.

Let 𝐽(𝜙ℎ) be the potential energy of the system, without taking into account contact and friction con-
tributions. Typically, it includes elastic and external load potential energy. Let 𝑋𝑖 for 𝑖 ∈ 𝐼nodes the set
of finite element nodes on the slave boundary in the reference configuration. Let 𝑋𝑖 for 𝑖 ∈ 𝐼def be the
contact nodes in potential contact with the master surface of a deformable body. Let 𝑋𝑖 for 𝑖 ∈ 𝐼rig be
the contact nodes in potential contact with a rigid obstacle.

We denote by 𝑥𝑖 = 𝜙ℎ(𝑋𝑖) the corresponding node on the deformed configuration and 𝑦𝑖 the projection
on the master surface (or rigid obstacle) on the deformed configuration. Let 𝑌𝑖 the point on the master
surface verifying 𝑦𝑖 = 𝜙ℎ(𝑌𝑖). This allows to define the normal gap as

𝑔𝑖 = 𝑛𝑦.(𝜙
ℎ(𝑋𝑖)− 𝜙ℎ(𝑌𝑖)) = ‖𝜙ℎ(𝑋𝑖)− 𝜙ℎ(𝑌𝑖)‖Sign(𝑛𝑦.(𝜙ℎ(𝑋𝑖)− 𝜙ℎ(𝑌𝑖))),

where 𝑛𝑦 is the outward unit normal vector of the master surface at 𝑦.

Considering only stationnary rigid obstacles and applying the principle of Alart-Curnier augmented
Lagrangian [AL-CU1991], the problem with nodal contact with friction condition can be expressed as
follows in an unsymmetric version (see [renard2013] for the linear elasticity case)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find 𝜙ℎ ∈ 𝑉 ℎ such that
𝛿𝐽(𝜙ℎ)[𝛿𝑢ℎ]−

∑︁
𝑖∈𝐼def

𝜆𝑖 · (𝛿𝑢ℎ(𝑋𝑖)− 𝛿𝑢ℎ(𝑌𝑖))−
∑︁
𝑖∈𝐼rig

𝜆𝑖𝛿𝑢
ℎ(𝑋𝑖) = 0 ∀𝛿𝑢ℎ ∈ 𝑉 ℎ,

1

𝑟

[︁
𝜆𝑖 + 𝑃𝑛𝑦 ,F (𝜆𝑖 + 𝑟

(︁
𝑔𝑖𝑛𝑦 − 𝛼(𝜙ℎ(𝑋𝑖)− 𝜙ℎ(𝑌𝑖)−𝑊𝑇 (𝑋𝑖) +𝑊𝑇 (𝑌𝑖)))

)︁]︁
= 0 ∀𝑖 ∈ 𝐼def,

1

𝑟

[︁
𝜆𝑖 + 𝑃𝑛𝑦 ,F (𝜆𝑖 + 𝑟

(︁
𝑔𝑖𝑛𝑦 − 𝛼(𝜙ℎ(𝑋𝑖)−𝑊𝑇 (𝑋𝑖)))

)︁]︁
= 0 ∀𝑖 ∈ 𝐼rig,

where 𝑊𝑇 , 𝛼, 𝑃𝑛𝑦 ,F . . . + tangent system

Sorry, for the moment the brick is not working.

23.25.3 Tools of the high-level generic assembly for contact with friction

The following nonlinear operators are defined in GWFL (see Compute arbitrary terms - high-level
generic assembly procedures - Generic Weak-Form Language (GWFL)):

• Transformed_unit_vector(Grad_u, n) where Grad_u is the gradient of a displace-
ment field and n a unit vector in the reference configuration. This nonlinear operator corresponds
to

𝑛𝑡𝑟𝑎𝑛𝑠 =
(𝐼 +∇𝑢)−𝑇𝑛

‖(𝐼 +∇𝑢)−𝑇𝑛‖

158 Chapter 23. The model description and basic model bricks

User Documentation, Release 5.4.2

with the following partial derivatives

𝜕𝑢𝑛𝑡𝑟𝑎𝑛𝑠[𝛿𝑢] = −(𝐼 − 𝑛𝑡𝑟𝑎𝑛𝑠 ⊗ 𝑛𝑡𝑟𝑎𝑛𝑠)(𝐼 +∇𝑢)−𝑇 (∇𝛿𝑢)𝑇𝑛𝑡𝑟𝑎𝑛𝑠

𝜕𝑛𝑛𝑡𝑟𝑎𝑛𝑠[𝛿𝑛] =
(𝐼 +∇𝑢)−𝑇 𝛿𝑛− 𝑛𝑡𝑟𝑎𝑛𝑠(𝑛𝑡𝑟𝑎𝑛𝑠 · 𝛿𝑛)

‖(𝐼 +∇𝑢)−𝑇𝑛‖

• Coulomb_friction_coupled_projection(lambda, n, Vs, g, f, r) where
lambda is the contact force, n is a unit normal vector, Vs is the sliding velocity, g is the gap, f
the friction coefficient and r a positive augmentation parameter. The expression of the operator is

𝑃 (𝜆, 𝑛, 𝑉𝑠, 𝑔, 𝑓, 𝑟) = −(𝜆 · 𝑛+ 𝑟𝑔)−𝑛+ 𝑃𝐵(𝑛,𝜏)(𝜆− 𝑟𝑉𝑠)

with 𝜏 = min(𝑓3 + 𝑓1(𝜆 · 𝑛+ 𝑟𝑔)−, 𝑓2)

where (·)− is the negative part ((𝑥)− = (−𝑥)+) and 𝑓1, 𝑓2, 𝑓3 are the three components of the
friction coefficient. Note that the components 𝑓2, 𝑓3 are optional. If a scalar fiction coefficient
is given (only 𝑓1) then this corresponds to the classical Coulomb friction law. If a vector of
two components is given (only 𝑓1, 𝑓2) then this corresponds to a Coulomb friction with a given
threshold. Finally, if a vector of three components is given, the friction law correspongs to the
expression of 𝜏 given above.

The expression 𝑃𝐵(𝑛,𝜏)(𝑞) refers to the orthogonal projection (this is link to the return mapping
algorithm) on the tangential ball (with respect to 𝑛 of radius 𝜏 .

The derivatives can be expressed as follows with 𝑇𝑛 = (𝐼 − 𝑛⊗ 𝑛) and 𝑞𝑇 = 𝑇𝑛𝑞:

𝜕𝑞𝑃𝐵(𝑛,𝜏)(𝑞) =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝜏 ≤ 0
T𝑛 for ‖𝑞𝑇 ‖ ≤ 𝜏

𝜏

‖𝑞𝑇 ‖

(︂
T𝑛 − 𝑞𝑇

‖𝑞𝑇 ‖
⊗ 𝑞𝑇

‖𝑞𝑇 ‖

)︂
otherwise

𝜕𝜏𝑃𝐵(𝑛,𝜏)(𝑞) =

{︃
0 for 𝜏 ≤ 0 or ‖𝑞𝑇 ‖ ≤ 𝜏
𝑞𝑇
‖𝑞𝑇 ‖

otherwise

𝜕𝑛𝑃𝐵(𝑛,𝜏)(𝑞) =

⎧⎪⎪⎨⎪⎪⎩
0 for 𝜏 ≤ 0

−𝑞 · 𝑛 T𝑛 − 𝑛⊗ 𝑞𝑇 for ‖𝑞𝑇 ‖ ≤ 𝜏

− 𝜏

‖𝑞𝑇 ‖

(︂
𝑞 · 𝑛

(︂
T𝑛 − 𝑞𝑇

‖𝑞𝑇 ‖
⊗ 𝑞𝑇

‖𝑞𝑇 ‖

)︂
+ 𝑛⊗ 𝑞𝑇

)︂
otherwise.

𝜕𝜆𝑃 (𝜆, 𝑛, 𝑉𝑠, 𝑔, 𝑓, 𝑟) = 𝜕𝑞𝑃𝐵(𝑛,𝜏) + 𝜕𝜏𝑃𝐵(𝑛,𝜏) ⊗ 𝜕𝜆𝜏 +𝐻(−𝜆 · 𝑛− 𝑟 𝑔) 𝑛⊗ 𝑛,

𝜕𝑛𝑃 (𝜆, 𝑛, 𝑉𝑠, 𝑔, 𝑓, 𝑟) =

⃒⃒⃒⃒
𝜕𝑛𝑃𝐵(𝑛,𝜏) + 𝜕𝜏𝑃𝐵(𝑛,𝜏) ⊗ 𝜕𝑛𝜏

+𝐻(−𝜆 · 𝑛− 𝑟 𝑔) (𝑛⊗ 𝜆− (2 𝜆 · 𝑛+ 𝑟 𝑔) 𝑛⊗ 𝑛+ (𝜆 · 𝑛+ 𝑟 𝑔) I) ,

𝜕𝑔𝑃 (𝜆, 𝑛, 𝑉𝑠, 𝑔, 𝑓, 𝑟) = 𝜕𝜏𝑃𝐵(𝑛,𝜏) 𝜕𝑔𝜏 +𝐻(−𝜆 · 𝑛− 𝑟 𝑔) 𝑟 𝑛

𝜕𝑓𝑃 (𝜆, 𝑛, 𝑉𝑠, 𝑔, 𝑓, 𝑟) = 𝜕𝜏𝑃𝐵(𝑛,𝜏)𝜕𝑓𝜏

𝜕𝑟𝑃 (𝜆, 𝑛, 𝑉𝑠, 𝑔, 𝑓, 𝑟) = 𝐻(−𝜆 · 𝑛− 𝑟 𝑔)𝑔𝑛+ 𝜕𝑞𝑃𝐵(𝑛,𝜏)𝑉𝑠 + 𝜕𝜏𝑃𝐵(𝑛,𝜏)𝜕𝑟𝜏

23.25.4 Integral contact brick with raytrace

Add of the brick:

indbrick = add_integral_large_sliding_contact_brick_raytracing
(model &md, const std::string &dataname_r,
scalar_type release_distance,
const std::string &dataname_friction_coeff = "0",
const std::string &dataname_alpha = "1");

23.25. Large sliding/large deformation contact with friction bricks 159

User Documentation, Release 5.4.2

This brick allows to deal with a multi-contact situation. It adds to the model a raytracing interpolate
transformation as described in a previous section whose name can be obtained by the command:

const std::string &transformation_name_of_large_sliding_contact_
→˓brick(model &md,

size_type indbrick);

Once the brick is added to the model, the master and slave contact boundaries have to be added with the
following function:

add_contact_boundary_to_large_sliding_contact_brick(model &md,
size_type indbrick, const mesh_im &mim, size_type region,
bool is_master, bool is_slave, const std::string &u,
const std::string &lambda = "", const std::string &w = "",
bool frame_indifferent = false)

where region should be a valid mesh region number representing a boundary, is_master should
be set to true if the contact detection is to be done on that contact boundary, is_slave should
be set to true if the integration of contact terms is to be done on that boundary. Note that a contact
boundary is allowed to be both master and slave, in particular to allow self-contact detection. u
is the displacement variable. If is_slave is set to true, lambda should describe a multiplier
variable with degrees of freedom on the contact boundary (typically added to the model with the md.
add_filtered_fem_variable(...) method). Pure master contact boundary
do not need the definition of a multiplier. Additionally, ``w is for the
evolutionnary case and represents the displacement at the previous time step.

A rigid obstacle can be added to the brick with:

add_rigid_obstacle_to_large_sliding_contact_brick(model &md,
size_type indbrick, std::string expr, size_type N)

where expr is an expression using GWFL (with X is the current position) which should be a signed
distance to the obstacle. N is the mesh dimension.

160 Chapter 23. The model description and basic model bricks

CHAPTER 24

Numerical continuation and bifurcation

Let an algebraic problem coming from discretisation of an FEM-model can be written in the form

𝐹 (𝑈) = 0.

In what follows, we shall suppose that the model depends on an additional scalar parameter 𝜆 so that
𝐹 (𝑈) = 𝐹 (𝑈, 𝜆).

24.1 Numerical continuation

Methods of numerical continuation serve for tracing solutions of the system

𝐹 (𝑈, 𝜆) = 0, 𝐹 : R𝑁 × R → R𝑁 .

In GetFEM, a continuation technique for piecewise 𝐶1 (𝑃𝐶1) solution curves is implemented (see
[Li-Re2014] for more details). Since it does not make an explicit difference between the state variable
𝑈 and the parameter 𝜆, we shall denote 𝑌 := (𝑈, 𝜆) for brevity. Nevertheless, to avoid bad scaling
when calculating tangents, for example, we shall use the following weighted scalar product and norm:

⟨𝑌, 𝑌 ⟩𝑤 := 𝜅⟨𝑈, �̃�⟩+ 𝜆�̃�, ‖𝑌 ‖𝑤 :=
√︀
𝜅‖𝑈‖2 + 𝜆2, 𝑌 = (𝑈, 𝜆), 𝑌 = (�̃� , �̃�).

Here, 𝜅 should be chosen so that 𝜅⟨𝑈, �̃�⟩ is proportional to the scalar product of the corresponding space
variables, usually in 𝐿2. One can take, for example, 𝜅 = ℎ𝑑, where ℎ is the mesh size and 𝑑 stands for
the dimension of the underlying problem. Alternatively, 𝜅 can be chosen as 1/𝑁 for simplicity.

The idea of the continuation strategy is to continue smooth pieces of solution curves by a classical
predictor-corrector method and to join the smooth pieces continuously.

The particular predictor-corrector method employed is a slight modification of the inexact Moore-
Penrose continuation implemented in MATCONT [Dh-Go-Ku2003]. It computes a sequence of con-
secutive points 𝑌𝑗 lying approximately on a solution curve and a sequence of the corresponding unit
tangent vectors 𝑇𝑗 :

‖𝐹 (𝑌𝑗)‖ ≤ 𝜀, 𝐹 ′(𝑌𝑗 ;𝑇𝑗) = 0, ‖𝑇𝑗‖𝑤 = 1, 𝑗 = 0, 1,

161

User Documentation, Release 5.4.2

To describe it, let us suppose that we have a couple (𝑌𝑗 , 𝑇𝑗) satisfying the relations above at our disposal.
In the prediction, an initial approximation of (𝑌𝑗+1, 𝑇𝑗+1) is taken as

𝑌 0
𝑗+1 := 𝑌𝑗 + ℎ𝑗𝑇𝑗 , 𝑇 0

𝑗+1 := 𝑇𝑗 ,

where ℎ𝑗 is a step size. Its choice will be discussed later on.

In the correction, one computes a sequence {(𝑌 𝑙
𝑗+1, 𝑇

𝑙
𝑗+1)}, where 𝑇 𝑙

𝑗+1 := 𝑇 𝑙
𝑗+1/‖𝑇 𝑙

𝑗+1‖𝑤 and the
couple (𝑌 𝑙

𝑗+1, 𝑇
𝑙
𝑗+1) is given by one iteration of the Newton method applied to the equation 𝐹 𝑙(𝑌, 𝑇) =

0 with

𝐹 𝑙(𝑌, 𝑇) :=

⎛⎜⎜⎜⎝
𝐹 (𝑌)

(𝑇 𝑙−1
𝑗+1)

⊤(𝑌 − 𝑌 𝑙−1
𝑗+1)

∇𝐹 (𝑌 𝑙−1
𝑗+1)𝑇

⟨𝑇 𝑙−1
𝑗+1, 𝑇 ⟩𝑤 − ⟨𝑇 𝑙−1

𝑗+1, 𝑇
𝑙−1
𝑗+1⟩𝑤

⎞⎟⎟⎟⎠
and the initial approximation (𝑌 𝑙−1

𝑗+1 , 𝑇
𝑙−1
𝑗+1). Due to the potential non-differentiability of 𝐹 , a piecewise-

smooth variant of the Newton method is used (Algorithm 7.2.14 in [Fa-Pa2003]).

Fig. 1: Correction.

A couple (𝑌 𝑙
𝑗+1, 𝑇

𝑙
𝑗+1) is accepted for (𝑌𝑗+1, 𝑇𝑗+1) if ‖𝐹 (𝑌 𝑙

𝑗+1)‖ ≤ 𝜀, ‖𝑌 𝑙
𝑗+1 − 𝑌 𝑙−1

𝑗+1 ‖𝑤 ≤ 𝜀′, and
the cosine of the angle between 𝑇 𝑙

𝑗+1 and 𝑇𝑗 is greater or equal to 𝑐min. Let us note that the partial
gradient of 𝐹 (or of one of its selection functions in the case of the non-differentiability) with respect to
𝑈 is assembled analytically whereas the partial gradient with respect to 𝜆 is evaluated by forward finite
differences with an increment equal to 1e-8.

The step size ℎ𝑗+1 in the next prediction depends on how the Newton correction has been successful.
Denoting the number of iterations needed by 𝑙it, it is selected as

ℎ𝑗+1 :=

⎧⎪⎨⎪⎩
max{ℎdecℎ𝑗 , ℎmin} if no new couple has been accepted,
min{ℎincℎ𝑗 , ℎmax} if a new couple has been accepted and 𝑙it < 𝑙thr,

ℎ𝑗 otherwise,

where 0 < ℎdec < 1 < ℎinc, 0 < 𝑙thr and 0 < ℎmin < ℎmax are given constants. At the beginning, one
sets ℎ1 := ℎinit for some ℎmin ≤ ℎinit ≤ ℎmax.

Now, let us suppose that we have approximated a piece of a solution curve corresponding to one sub-
domain of smooth behaviour of 𝐹 and we want to recover a piece corresponding to another sub-domain
of smooth behaviour. Let (𝑌𝑗 , 𝑇𝑗) be the last computed couple.

To approximate the tangent to the other smooth piece, we first take a point 𝑌𝑗 + ℎ𝑇𝑗 with ℎ a bit greater
than ℎmin so that this point belongs to the interior of the other sub-domain of smooth behaviour. Then

162 Chapter 24. Numerical continuation and bifurcation

User Documentation, Release 5.4.2

Fig. 2: Transition between smooth pieces of a solution curve.

we find 𝑇 such that

∇𝐹 (𝑌𝑗 + ℎ𝑇𝑗)𝑇 = 0, ‖𝑇‖𝑤 = 1,

and it remains to determine an appropriate direction of this vector. This can be done on the basis of the
following observations: First, there exists 𝑟 ∈ {±1} such that 𝑌𝑗−𝑟ℎ̃𝑇 remains in the same sub-domain

as 𝑌𝑗 for any ℎ̃ positive. This is characterised by the fact that
|𝑇⊤

− 𝑇 |
‖𝑇−‖‖𝑇‖ is significantly smaller than 1 for

𝑇− with ∇𝐹 (𝑌𝑗 − 𝑟ℎ̃𝑇)𝑇− = 0. Second, 𝑌𝑗 + 𝑟ℎ̃𝑇 appears in the other sub-domain for ℎ̃ larger than

some positive threshold, and, for such values,
|𝑇⊤

+ 𝑇 |
‖𝑇+‖‖𝑇‖ is close to 1 for 𝑇+ with ∇𝐹 (𝑌𝑗 + 𝑟ℎ̃𝑇)𝑇+ = 0.

This suggests the following procedure for selecting the desired direction of 𝑇 : Increase the values of ℎ̃
successively from ℎmin, and when you arrive at ℎ̃ and 𝑟 ∈ {±1} such that

|𝑇⊤𝑇 |
‖𝑇‖‖𝑇‖

≈ 1 if ∇𝐹 (𝑌𝑗 + 𝑟ℎ̃𝑇)𝑇 = 0,

take 𝑟𝑇 as the approximation of the tangent to the other smooth piece.

Having this approximation at our disposal, we restart the predictor-corrector with (𝑌𝑗 , 𝑟𝑇).

In GetFEM, the continuation is implemented for two ways of parameterization of the model:

1. The parameter 𝜆 is directly a scalar datum, which the model depends on.

2. The model is parametrised by the scalar parameter 𝜆 via a vector datum 𝑃 , which the model
depends on. In this case, one takes the linear path

𝜆 ↦→ 𝑃 (𝜆) := (1− 𝜆)𝑃 0 + 𝜆𝑃 1,

where 𝑃 0 and 𝑃 1 are given values of 𝑃 , and one traces the solution set of the problem

𝐹 (𝑈,𝑃 (𝜆)) = 0.

24.2 Detection of limit points

When tracing solutions of the system 𝐹 (𝑈, 𝜆) = 0, one may be interested in limit points (also called
fold or turning points), where the number of solutions with the same value of 𝜆 changes. These points

24.2. Detection of limit points 163

User Documentation, Release 5.4.2

can be detected by a sign change of a test function 𝜏LP:

𝜏LP(𝑇𝑗)𝜏LP(𝑇𝑗+1) < 0,

where 𝜏LP is defined by

𝜏LP(𝑇) := 𝑇𝜆, 𝑇 = (𝑇𝑈 , 𝑇𝜆) ∈ R𝑁 × R.

Fig. 3: Limit point.

24.3 Numerical bifurcation

A point 𝑌 is called a bifurcation point of the system 𝐹 (𝑌) = 0 if 𝐹 (𝑌) = 0 and two or more distinct
solution curves pass through it. The following result gives a test for smooth bifurcation points (see, e.g.,
[Georg2001]):

Let 𝑠 ↦→ 𝑌 (𝑠) be a parameterization of a solution curve and 𝑌 := 𝑌 (𝑠) be a bifurcation point. Moreover,
let 𝑇⊤�̇� (𝑠) > 0, 𝐵 /∈ Im(𝐽(𝑌)), 𝐶 /∈ Im(𝐽(𝑌)⊤), 𝑑 ∈ R and

𝐽(𝑌) :=

(︂
∇𝐹 (𝑌)
𝑇⊤

)︂
.

Define 𝜏BP(𝑌) via

(︂
𝐽(𝑌) 𝐵
𝐶⊤ 𝑑

)︂(︂
𝑉 (𝑌)
𝜏BP(𝑌)

)︂
=

(︂
0
1

)︂
.

Then 𝜏BP(𝑌 (𝑠)) changes its sign at 𝑠 = 𝑠.

Obviously, if one takes 𝐵, 𝐶 and 𝑑 randomly, it is highly possible that they satisfy the requirements
above. Consequently, the numerical continuation method is able to detect bifurcation points by taking
the vectors 𝑌 and 𝑇 supplied by the correction at each continuation step and monitoring the signs of
𝜏BP.

164 Chapter 24. Numerical continuation and bifurcation

User Documentation, Release 5.4.2

Once a bifurcation point 𝑌 is detected by a sign change 𝜏BP(𝑌𝑗)𝜏BP(𝑌𝑗+1) < 0, it can be approximated
more precisely by the predictor-corrector steps described above with a special step-length adaptation
(see Section 8.1 in [Al-Ge1997]). Namely, one can take the subsequent step lengths as

ℎ𝑗+1 := − 𝜏BP(𝑌𝑗+1)

𝜏BP(𝑌𝑗+1)− 𝜏BP(𝑌𝑗)
ℎ𝑗

until |ℎ𝑗+1| < ℎmin, which corresponds to the secant method for finding a zero of the function 𝑠 ↦→
𝜏BP(𝑌 (𝑠)).

Finally, it would be desirable to switch solution branches. To this end, we shall consider the case of the
so-called simple bifurcation point, where only two distinct solution curves intersect.

Let 𝑌 be an approximation of 𝑌 that we are given and 𝑉 (𝑌) be the first part of the solution of the
augmented system for computing the test function 𝜏BP(𝑌). As proposed in [Georg2001], one can take
𝑉 (𝑌) as a predictor direction and do one continuation step starting with (𝑌 , 𝑉 (𝑌)) to obtain a point
on a new branch. After this continuation step has been performed successfully and a point on the new
branch has been recovered, one can proceed with usual predictor-corrector steps to trace this branch.

Recently, tools for numerical 𝑃𝐶1-bifurcation have been developed in GetFEM. Let 𝐽 be a matrix
function of a real parameter now defined by

𝐽(𝛼) := (1− 𝛼)

(︂
∇𝐹 (𝑌𝑗)
𝑇⊤
𝑗

)︂
+ 𝛼

(︂
∇𝐹 (𝑌𝑗+1)
𝑇⊤
𝑗+1

)︂
.

As proposed in [Li-Re2014hal], the following test can be used for detection of a 𝑃𝐶1 bifurcation point
between 𝑌𝑗 and 𝑌𝑗+1:

det 𝐽(0) det𝐽(1) < 0.

To perform this test numerically, introduce

𝑀(𝛼) :=

(︂
𝐽(𝛼) 𝐵
𝐶⊤ 𝑑

)︂

and 𝜏BP(𝛼) analogously as above via

𝑀(𝛼)

(︂
𝑉 (𝛼)
𝜏BP(𝛼)

)︂
=

(︂
0
1

)︂
.

It follows from Cramer’s rule that

𝜏BP(𝛼) =
det 𝐽(𝛼)

det𝑀(𝛼)

24.3. Numerical bifurcation 165

User Documentation, Release 5.4.2

provided that det𝑀(𝛼) is non-zero. Hence if 𝐵, 𝐶 and 𝑑 are chosen so that det𝑀(𝛼) is non-zero
whenever det 𝐽(𝛼) is zero, then the sign changes of det 𝐽(𝛼) are characterised by passings of 𝜏BP(𝛼)
through 0 whereas the sign changes of det𝑀(𝛼) by sign changes of 𝜏BP(𝛼) caused by singularities.
To conclude, the sign of det 𝐽(0) det 𝐽(1) is determined by following the behaviour of 𝜏BP(𝛼) and
monitoring the sign changes of det 𝐽(𝛼) when 𝛼 passes through [0, 1].

As justified in [Li-Re2014hal], 𝐵, 𝐶 and 𝑑 can be chosen randomly again. The increments 𝛿 of the
current values of 𝛼 are changed adaptively so that singularities of 𝜏BP are treated effectively. After each
calculation of 𝜏BP(𝛼), 𝛿 is set as follows:

𝛿 :=

⎧⎪⎨⎪⎩
min{2𝛿, 𝛿max} if |𝜏BP(𝛼)− 𝜏BP(𝛼− 𝛿)| < 0.5𝜏fac𝜏ref ,
max{0.1𝛿, 𝛿min} if |𝜏BP(𝛼)− 𝜏BP(𝛼− 𝛿)| > 𝜏fac𝜏ref ,
𝛿 otherwise,

where 𝛿max > 𝛿min > 0 and 𝜏fac > 0 are given constants and 𝜏ref := max{|𝜏BP(1)− 𝜏BP(0)|, 10−8}.

When a 𝑃𝐶1 bifurcation point is detected between 𝑌𝑗 and 𝑌𝑗+1, it is approximated more precisely by
a bisection-like procedure. The obtained approximation lies on the same smooth branch as 𝑌𝑗 , and the
corresponding unit tangent that points out from the corresponding region of smoothness is calculated
too.

Contrary to the smooth case, it is not clear how many branches can emanate from the 𝑃𝐶1 bifurcation
point and in which directions they could be sought. For this reason, continuation steps for a whole
sequence of predictor directions are tried out for finding points on new branches.

Denoting 𝑌 , 𝑇 the approximation of the bifurcation point and the corresponding tangent, respectively,
the predictor directions are taken as follows: For a couple of reference vectors 𝑉1 and 𝑉2, one takes ±𝑉
with 𝑉 satisfying

∇𝐹 (𝑌 + ℎmin𝑉)𝑉 = 0, ‖𝑉 ‖𝑤 = 1,

where 𝑉 passes through a set of linear combinations of 𝑉1 and 𝑉2. The total number of the linear com-
binations is given by 𝑛dir, and the reference vectors are chosen successively according to the following
strategy:

1. One takes 𝑉1 := −𝑇 and 𝑉2 such that

∇𝐹 (𝑌 + ℎmin𝑇)𝑉2 = 0, ‖𝑉2‖𝑤 = 1.

2. Let {𝑇1, . . . 𝑇𝑛br
} denote the set of unit tangents that correspond to the points from the branches

found so far and that are oriented in the directions of branching from the bifurcation point. Then
𝑉1 and 𝑉2 are taken successively as different combinations from {𝑇1, . . . 𝑇𝑛br

}.

3. If all combinations that are available so far have already been used, let 𝑉1 be unchanged and take
𝑉2 := 𝑉 +

2 with 𝑉 +
2 satisfying

∇𝐹
(︁
𝑌 + ℎmin

(︁
𝑉 −
2 + 0.1

𝑉3

‖𝑉3‖𝑤

)︁)︁
𝑉 +
2 = 0, ‖𝑉 +

2 ‖𝑤 = 1.

Here, 𝑉 −
2 equals the vector 𝑉2 employed previously and 𝑉3 is chosen randomly.

The total number of selections of 𝑉1 and 𝑉2 is given by 𝑛span.

More details on 𝑃𝐶1 numerical branching can be found in [Li-Re2015hal].

166 Chapter 24. Numerical continuation and bifurcation

User Documentation, Release 5.4.2

24.4 Approximation of solution curves of a model

The numerical continuation is defined in getfem/getfem_continuation.h. In order to use it,
one has to set it up via the corresponding object first:

getfem::cont_struct_getfem_model S(model, parameter_name, sfac, ls, h_init,
→˓ h_max, h_min, h_inc, h_dec,

maxit, thrit, maxres, maxdiff, mincos,
→˓maxres_solve, noisy, singularities,

non-smooth, delta_max, delta_min,
→˓thrvar, ndir, nspan);

where parameter_name is the name of the model datum representing 𝜆, sfac represents the scale
factor 𝜅, and ls is the name of the solver to be used for the linear systems incorporated in the process
(e.g., getfem::default_linear_solver<getfem::model_real_sparse_matrix,
getfem::model_real_plain_vector>(model)). The real numbers h_init, h_max,
h_min, h_inc, h_dec denote ℎinit, ℎmax, ℎmin, ℎinc, and ℎdec, the integer maxit is the maximum
number of iterations allowed in the correction and thrit, maxres, maxdiff, mincos, and
maxres_solve denote 𝑙thr, 𝜀, 𝜀′, 𝑐min, and the target residual value for the linear systems to be
solved, respectively. The non-negative integer noisy determines how detailed information has to
be displayed in the course of the continuation process (the larger value the more details), the integer
singularities determines whether the tools for detection and treatment of singular points have to
be used (0 for ignoring them completely, 1 for detecting limit points, and 2 for detecting and treating
bifurcation points, as well), and the boolean value of non-smooth determines whether only tools
for smooth continuation and bifurcation have to be used or even tools for non-smooth ones do. The
real numbers delta_max, delta_min and thrvar represent 𝛿max, 𝛿min and 𝜏fac, and the integers
ndir and nspan stand for 𝑛dir and 𝑛span, respectively.

Optionally, parameterization by a vector datum is then declared by:

S.set_parametrised_data_names(initdata_name, finaldata_name, currentdata_
→˓name);

Here, the data names initdata_name and finaldata_name should represent 𝑃 0 and 𝑃 1, respec-
tively. Under currentdata_name, the values of 𝑃 (𝜆) have to be stored, that is, actual values of the
datum the model depends on.

Next, the continuation is initialised by:

S.init_Moore_Penrose_continuation(U, lambda, T_U, T_lambda, h);

where U should be a solution for the value of the parameter 𝜆 equal to lambda so that 𝑌0 =
(U,lambda). During this initialisation, an initial unit tangent 𝑇0 corresponding to 𝑌0 is computed in ac-
cordance with the sign of the initial value T_lambda, and it is returned in T_U, T_lambda. Moreover,
h is set to the initial step size h_init.

Subsequently, one step of the continuation is called by

S.Moore_Penrose_continuation(U, lambda, T_U, T_lambda, h, h0);

After each call, a new point on a solution curve and the corresponding tangent are returned in the vari-
ables U, lambda and T_U, T_lambda. The step size for the next prediction is returned in h. The
size of the current step is returned in the optional argument h0. According to the chosen value of
singularities, the test functions for limit and bifurcation points are evaluated at the end of each
continuation step. Furthermore, if a smooth bifurcation point is detected, the procedure for numerical

24.4. Approximation of solution curves of a model 167

User Documentation, Release 5.4.2

bifurcation is performed and an approximation of the branching point as well as tangents to both bi-
furcating curves are saved in the continuation object S. From there, they can easily be recovered with
member functions of S so that one can initialise the continuation to trace either of the curves next time.

Complete examples of use on a smooth problem are shown in the test programs tests/
test_continuation.cc, interface/tests/matlab/demo_continuation.m and
interface/src/scilab/demos/demo_continuation.sce, whereas interface/src/
scilab/demos/demo_continuation_vee.sce and interface/src/scilab/demos/
demo_continuation_block.sce employ also non-smooth tools.

168 Chapter 24. Numerical continuation and bifurcation

CHAPTER 25

Finite strain Elasticity bricks

This brick implements some classical hyperelastic constitutive law for large deformation elasticity.

25.1 Some recalls on finite strain elasticity

Let Ω be the reference configuration and Ω𝑡 the deformed configuration of an elastic media. Then for
𝑋 ∈ Ω we will denote by Φ(𝑥) = 𝑢(𝑋) + 𝑋 the deformation. the vector field 𝑢 is the displacement
with respect to the initial position.

The Cauchy-Green tensor is defined by

𝐶 = ∇Φ𝑇∇Φ

The deformation tensor (Green-Lagrange)

𝐸 =
1

2

(︀
∇Φ𝑇∇Φ− 𝐼)

)︀
=

1

2

(︀
∇𝑢𝑇∇𝑢+∇𝑢𝑇 +∇𝑢

)︀
(In the case of linear elasticity, ∇𝑢𝑇∇𝑢 is neglected).

One has

𝐶 = ∇Φ𝑇∇Φ = 2𝐸 + 𝐼.

Both tensors 𝐸 and 𝐶 are used to describe finite strain elasticity constitutive laws.

25.1.1 Main invariants and derivatives

The description of finite strain elasticity constitutive laws often requires the principal invariants of the
deformation tensors:

169

User Documentation, Release 5.4.2

𝑖1, 𝑖2, 𝑖3 are the invariants of orders 1, 2 and 3:

𝑖1(𝐸) = tr 𝐸 𝑖1(𝐶) = 2tr 𝐸 + 3

𝑖2(𝐸) =
(tr 𝐸)2 − tr 𝐸2

2
𝑖2(𝐶) = 4𝑖2(𝐸) + 4𝑖1(𝐸) + 3

𝑖3(𝐸) = det𝐸 𝑖3(𝐶) = 8𝑖3(𝐸) + 4𝑖2(𝐸) + 2𝑖1(𝐸) + 1

The derivatives of the invariants with respect to the tensor 𝐸 in the direction 𝐻 are:

𝜕𝑖1
𝜕𝐸

(𝐸;𝐻) = 𝐼 : 𝐻 = tr 𝐻

𝜕𝑖2
𝜕𝐸

(𝐸;𝐻) = (𝑖1(𝐸)𝐼 − 𝐸𝑇) : 𝐻 = (tr 𝐸)(tr 𝐻)− 𝐸𝑇 : 𝐻

𝜕𝑖3
𝜕𝐸

(𝐸;𝐻) = 𝑖3(𝐸)(𝐸−𝑇) : 𝐻 = (𝑖2(𝐸)𝐼 − 𝑖1(𝐸)𝐸 + 𝐸2) : 𝐻 in 3D.

We will write

𝜕𝑖1
𝜕𝐸

(𝐸) = 𝐼

𝜕𝑖2
𝜕𝐸

(𝐸) = 𝑖1(𝐸)𝐼 − 𝐸𝑇

𝜕𝑖3
𝜕𝐸

(𝐸) = 𝑖3(𝐸)𝐸−𝑇 .

Let us also recall that

𝜕(𝑀−1)

𝜕𝑀
(𝑀 ;𝐻) = −𝑀−1𝐻𝑀−1

The second derivatives of the invariants are fourth order tensors defined by

𝜕2𝑖1
𝜕𝐸2

(𝐸) = 0

𝜕2𝑖2
𝜕𝐸2

(𝐸)𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑗𝛿𝑘𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘

𝜕2𝑖3
𝜕𝐸2

(𝐸)𝑖𝑗𝑘𝑙 = 𝑖3(𝐸)(𝐸−1
𝑗𝑖 𝐸

−1
𝑙𝑘 − 𝐸−1

𝑗𝑘 𝐸
−1
𝑙𝑖).

The notation 𝐴 : 𝐵 denotes the Frobenius product 𝐴 : 𝐵 =
∑︁
𝑖𝑗

𝐴𝑖𝑗𝐵𝑖𝑗 . This product has the following

properties:

𝐴 : 𝐵 = tr (𝐴𝑇𝐵) = tr (𝐴𝐵𝑇) = tr (𝐵𝐴𝑇) = tr (𝐵𝑇𝐴),

𝐴 : 𝐵𝐶 = 𝐵𝑇𝐴 : 𝐶,

𝐴 : 𝐵𝐶 = 𝐴𝐶𝑇 : 𝐵,

tr (𝐴𝐵𝐶) = tr (𝐵𝑇𝐴𝑇𝐶𝑇)

Note also that

𝜕𝑖𝑗
𝜕𝐸

(𝐶;𝐻) = 2
𝜕𝑖𝑗
𝜕𝐶

(𝐶;𝐻).

This property enables us to write the constitutive laws as a function of the Cauchy-Green tensor invari-
ants, especially for the case of the generalized Blatz-Ko strain energy.

170 Chapter 25. Finite strain Elasticity bricks

User Documentation, Release 5.4.2

25.1.2 Potential elastic energy and its derivative

The stress in the reference configuration can be describe by the second Piola-Kirchhoff stress tensor
^̂𝜎 = ∇Φ−1𝜎∇Φ−𝑡 det∇Φ where 𝜎 is the Cauchy stress tensor in the deformed configuration Ω𝑡. An
hyper-elastic constitutive law is given by

^̂𝜎 =
𝜕

𝜕𝐸
𝑊 (𝐸) = 2

𝜕

𝜕𝐶
𝑊 (𝐶)

where 𝑊 is the density of strain energy of the material. The total strain energy is given by

ℐ(𝑢) =
∫︁
Ω
𝑊 (𝐸(𝑢))𝑑𝑋

and the derivative of the energy in a direction 𝑣 can be writen

𝐷ℐ(𝑢; 𝑣) =
∫︁
Ω

𝜕𝑊

𝜕𝐸
(𝐸(𝑢)) : (𝐼 +∇𝑢𝑇)∇𝑣𝑑𝑋

because in particular

𝐷𝐸(𝑢; 𝑣) =
1

2
(∇𝑢𝑇∇𝑣 +∇𝑣𝑇∇𝑢+∇𝑣𝑇 +∇𝑣)

=
1

2
(∇𝑣𝑇 (𝐼 +∇𝑢) + (𝐼 +∇𝑢𝑇)∇𝑣)

and 𝐴 : 𝐵 = 𝐴 : (𝐵 +𝐵𝑇)/2 when A is symmetric which is the case for ^̂𝜎.

Another way is to consider the static equilibrium which can be written as follows in the reference con-
figuration:

−div
(︁
(𝐼 +∇𝑢)^̂𝜎

)︁
= 𝑓.

Integrating by parts, one obtains: ∫︁
Ω
(𝐼 +∇𝑢)^̂𝜎 : ∇𝑣𝑑𝑋 = 𝑙(𝑣).

25.1.3 Tangent matrix

The displacement 𝑢 is fixed. In order to obtain the tangent matrix, one subsitutes 𝑢 with 𝑢+ ℎ∫︁
Ω
(𝐼 +∇𝑢+∇ℎ)^̂𝜎(𝐸(𝑢) + 𝐸(ℎ) +

1

2
(∇ℎ𝑇∇𝑢+∇𝑢𝑇∇ℎ)) : ∇𝑣𝑑𝑋 = 𝑙(𝑣)

and considers the linear part w.r.t. ℎ, which is ∫︁
Ω
∇ℎ ^̂𝜎(𝐸(𝑢)) : ∇𝑣𝑑𝑋+∫︁

Ω

𝜕2𝑊

𝜕𝐸2

(︂
∇ℎ+∇ℎ𝑇 +∇ℎ𝑇∇𝑢+∇𝑢𝑇∇ℎ

2

)︂
: (𝐼 +∇𝑢𝑇)∇𝑣𝑑𝑋

which is symmetric w.r.t. 𝑣 and ℎ. It can be rewritten as∫︁
Ω
∇ℎ ^̂𝜎(𝐸(𝑢)) : ∇𝑣 +𝒜((𝐼 +∇𝑢𝑇)∇ℎ) : (𝐼 +∇𝑢𝑇)∇𝑣 𝑑𝑋

where 𝒜 is the symmetric 3× 3× 3× 3 tensor given by 𝒜𝑖𝑗𝑘𝑙 = ((𝜕
2𝑊
𝜕𝐸2)𝑖𝑗𝑘𝑙 + (𝜕

2𝑊
𝜕𝐸2)𝑖𝑗𝑙𝑘)/2.

25.1. Some recalls on finite strain elasticity 171

User Documentation, Release 5.4.2

25.1.4 Some classical constitutive laws

Linearized: Saint-Venant Kirchhoff law (small deformations)

𝑊 =
𝜆

2
𝑖1(𝐸)2 + 𝜇𝑖1(𝐸

2)

^̂𝜎 = 𝜆𝑖1(𝐸)𝐼 + 2𝜇𝐸

𝒜 = 𝜆𝑖1(𝐻)𝐼 + 𝜇(𝐻 +𝐻𝑇)

Three parameters Mooney-Rivlin law

Compressible material.

𝑊 = 𝑐1(𝑗1(𝐶)− 3) + 𝑐2(𝑗2(𝐶)− 3) + 𝑑1(𝑖3(𝐶)
1/2 − 1)2

where 𝑐1, 𝑐2 and 𝑑1 are given coefficients and

𝑗1(𝐶) = 𝑖1(𝐶)𝑖3(𝐶)
−1/3

𝑗2(𝐶) = 𝑖2(𝐶)𝑖3(𝐶)
−2/3

𝜕𝑗1
𝜕𝐶

(𝐶) = 𝑖3(𝐶)
−1/3

(︂
𝜕𝑖1
𝜕𝐶

(𝐶)− 𝑖1(𝐶)

3𝑖3(𝐶)

𝜕𝑖3
𝜕𝐶

(𝐶)

)︂
𝜕𝑗2
𝜕𝐶

(𝐶) = 𝑖3(𝐶)
−2/3

(︂
𝜕𝑖2
𝜕𝐶

(𝐶)− 2𝑖2(𝐶)

3𝑖3(𝐶)

𝜕𝑖3
𝜕𝐶

(𝐶)

)︂
𝜕2𝑗1
𝜕𝐶2

(𝐶) = 𝑖3(𝐶)
−1/3

(︂
4𝑖1(𝐶)

9𝑖3(𝐶)2
𝜕𝑖3
𝜕𝐶

(𝐶)⊗ 𝜕𝑖3
𝜕𝐶

(𝐶)− 1

3𝑖3(𝐶)

(︂
𝜕𝑖3
𝜕𝐶

(𝐶)⊗ 𝜕𝑖1
𝜕𝐶

(𝐶)

+
𝜕𝑖1
𝜕𝐶

(𝐶)⊗ 𝜕𝑖3
𝜕𝐶

(𝐶)

)︂
− 𝑖1(𝐶)

3𝑖3(𝐶)

𝜕2𝑖3
𝜕𝐶2

(𝐶)

)︂
𝜕2𝑗2
𝜕𝐶2

(𝐶) = 𝑖3(𝐶)
−2/3

(︂
𝜕2𝑖2
𝜕𝐶2

(𝐶) +
10𝑖2(𝐶)

9𝑖3(𝐶)2
𝜕𝑖3
𝜕𝐶

(𝐶)⊗ 𝜕𝑖3
𝜕𝐶

(𝐶)

− 2

3𝑖3(𝐶)
(
𝜕𝑖3
𝜕𝐶

(𝐶)⊗ 𝜕𝑖2
𝜕𝐶

(𝐶) +
𝜕𝑖2
𝜕𝐶

(𝐶)⊗ 𝜕𝑖3
𝜕𝐶

(𝐶))− 2𝑖2(𝐶)

3𝑖3(𝐶)

𝜕2𝑖3
𝜕𝐶2

(𝐶)

)︂
and then

^̂𝜎 = 2𝑐1
𝜕𝑗1
𝜕𝐶

(𝐶) + 2𝑐2
𝜕𝑗2
𝜕𝐶

(𝐶) + 2𝑑1

(︁
1− 𝑖3(𝐶)

−1/2
)︁ 𝜕𝑖3
𝜕𝐶

(𝐶)

ℬ = 4𝑐1
𝜕2𝑗1
𝜕𝐶2

(𝐶) + 4𝑐2
𝜕2𝑗2
𝜕𝐶2

(𝐶) + 4𝑑1

(︂(︁
1− 𝑖3(𝐶)

−1/2
)︁ 𝜕2𝑖3
𝜕𝐶2

(𝐶) +
1

2
𝑖3(𝐶)

−3/2𝜕𝑖3
𝜕𝐶

(𝐶)⊗ 𝜕𝑖3
𝜕𝐶

(𝐶)

)︂
𝒜𝑖𝑗𝑘𝑙 = (ℬ𝑖𝑗𝑘𝑙 + ℬ𝑗𝑖𝑘𝑙)/2

Incompressible material.

𝑑1 = 0 with the additional constraint: 𝑖3(𝐶) = 1

The incompressibility constraint 𝑖3(𝐶) = 1 is handled with a Lagrange multiplier 𝑝 (the pressure)

constraint: 𝜎 = −𝑝𝐼 ⇒ ^̂𝜎 = −𝑝∇Φ∇Φ−𝑇 det∇Φ

1− 𝑖3(∇Φ) = 0

−
∫︁
Ω0

(det∇Φ− 1)𝑞𝑑𝑋 = 0 ∀𝑞

172 Chapter 25. Finite strain Elasticity bricks

User Documentation, Release 5.4.2

𝐵 = −
∫︁
Ω0

𝑝(∇Φ)−𝑇 det∇Φ : ∇𝑣𝑑𝑋

𝐾 =

∫︁
Ω0

(︀
𝑝(∇Φ)−𝑇 (∇ℎ)𝑇 (∇Φ)−𝑇 det∇Φ : ∇𝑣𝑑𝑋 − 𝑝(∇Φ)−𝑇 (det∇Φ(∇Φ)−𝑇 : ∇ℎ) : ∇𝑣

)︀
𝑑𝑋

=

∫︁
Ω0

𝑝(∇ℎ𝑇∇Φ−𝑇) : (∇Φ−1∇𝑣) det∇Φ𝑑𝑋 −
∫︁
Ω0

𝑝(∇Φ−𝑇 : ∇ℎ)(∇Φ−𝑇 : ∇𝑣) det∇Φ𝑑𝑋

Ciarlet-Geymonat law

𝑊 = 𝑎 𝑖1(𝐶) + (
𝜇

2
− 𝑎)𝑖2(𝐶) + (

𝜆

4
− 𝜇

2
+ 𝑎)𝑖3(𝐶)− (

𝜇

2
+
𝜆

4
) log det(𝐶)

with 𝜆, 𝜇 the Lame coefficients and max(0, 𝜇2 − 𝜆
4) < 𝑎 < 𝜇

2 (see [ciarlet1988]).

Generalized Blatz-Ko law

𝑊 = (𝑎𝑖1(𝐶) + 𝑏𝑖3(𝐶)
1/2 + 𝑐

𝑖2(𝐶)

𝑖3(𝐶)
+ 𝑑)𝑛

Since 𝜕
𝜕𝐶𝑊 (𝐶) =

∑︁
𝑗

𝜕𝑊

𝜕𝑖𝑗(𝐶)

𝜕𝑖𝑗(𝐶)

𝜕𝐶
, and 𝜕2

𝜕𝐶2𝑊 (𝐶) =
∑︁
𝑗

∑︁
𝑘

𝜕2𝑊

𝜕𝑖𝑗(𝐶)𝜕𝑖𝑘(𝐶)

𝜕𝑖𝑘(𝐶)

𝜕𝐶
⊗ 𝜕𝑖𝑗(𝐶)

𝜕𝐶
+

∑︁
𝑗

𝜕𝑊

𝜕𝑖𝑗(𝐶)

𝜕2𝑖𝑗(𝐶)

𝜕𝐶2
we must compute the derivatives of the strain energy function with respect to the

Cauchy-Green tensor invariants (we don’t need to compute the invariants derivatives with respect to 𝐸
since 𝜕𝑖𝑗

𝜕𝐸 (𝐶;𝐻) = 2
𝜕𝑖𝑗
𝜕𝐶 (𝐶;𝐻)) :

𝜕𝑊
𝜕𝑖1(𝐶) = 𝑛𝑎𝑍𝑛−1 with 𝑍 = (𝑎𝑖1(𝐶) + 𝑏𝑖3(𝐶)

1/2 + 𝑐 𝑖2(𝐶)
𝑖3(𝐶) + 𝑑)

𝜕𝑊
𝜕𝑖2(𝐶) = 𝑛 𝑐

𝑖3(𝐶)𝑍
𝑛−1

𝜕𝑊
𝜕𝑖3(𝐶) = 𝑛(𝑏

2𝑖3(𝐶)1/2
− 𝑐𝑖2(𝐶)

𝑖3(𝐶)2
)𝑍𝑛−1

𝜕𝑊 2

𝜕2𝑖1(𝐶)
= 𝑛(𝑛− 1)𝐴2𝑍𝑛−2

𝜕𝑊 2

𝜕𝑖1(𝐶)𝜕𝑖2(𝐶) = 𝑛(𝑛− 1)𝐴 𝑐
𝑖3(𝐶)𝑍

𝑛−2

𝜕𝑊 2

𝜕𝑖1(𝐶)𝜕𝑖3(𝐶) = 𝑛(𝑛− 1)𝐴(𝑏
2𝑖3(𝐶)1/2

− 𝑐𝑖2(𝐶)
𝑖3(𝐶)2

)𝑍𝑛−2

𝜕𝑊 2

𝜕2𝑖2(𝐶)
= 𝑛(𝑛− 1) 𝑐2

𝑖3(𝐶)2
𝑍𝑛−2

𝜕𝑊 2

𝜕𝑖2(𝐶)𝜕𝑖3(𝐶) = 𝑛(𝑛− 1)(𝑏
2𝑖3(𝐶)1/2

− 𝑐𝑖2(𝐶)
𝑖3(𝐶)2

)𝑍𝑛−2 − 𝑛 𝑐2

𝑖3(𝐶)2
𝑍𝑛−1

𝜕𝑊 2

𝜕𝑖3(𝐶)2
= 𝑛(𝑛− 1)(𝑏

2𝑖3(𝐶)1/2
− 𝑐𝑖2(𝐶)

𝑖3(𝐶)2
)2𝑍𝑛−2 + 𝑛(− 𝑏

4𝑖3(𝐶)3/2
+ 2 𝑐𝑖2(𝐶)

𝑖3(𝐶)4
)𝑍𝑛−1

Plane strain hyper-elasticity

All previous models are valid in volumic domains. Corresponding plane strain 2D models can be ob-
tained by restricting the stress tensor and the fourth order tensor 𝒜 to their plane components.

25.2 Add an nonlinear elasticity brick to a model

This brick represents a large strain elasticity problem. It is defined in the files getfem/
getfem_nonlinear_elasticity.h and getfem/getfem_nonlinear_elasticity.
cc. The function adding this brick to a model is

25.2. Add an nonlinear elasticity brick to a model 173

User Documentation, Release 5.4.2

ind = getfem::add_nonlinear_elasticity_brick
(md, mim, varname, AHL, dataname, region = -1);

where AHL is an object of type getfem::abstract_hyperelastic_law which represents the
considered hyperelastic law. It has to be chosen between:

getfem::SaintVenant_Kirchhoff_hyperelastic_law AHL;
getfem::Ciarlet_Geymonat_hyperelastic_law AHL;
getfem::Mooney_Rivlin_hyperelastic_law AHL(compressible, neohookean);
getfem::plane_strain_hyperelastic_law AHL(pAHL);
getfem::generalized_Blatz_Ko_hyperelastic_law AHL;

The Saint-Venant Kirchhoff law is a linearized law defined with the two Lame coefficients, Ciarlet
Geymonat law is defined with the two Lame coefficients and an additional coefficient (𝜆, 𝜇, 𝑎).

The Mooney-Rivlin law accepts two optional flags, the first one determines if the material will be com-
pressible (𝑑1 ̸= 0) and the second one determines if the material is neo Hookean (𝑐2 = 0). Depending
on these flags one to three coefficients may be necessary. By default it is defined as incompressible and
non neo Hookean, thus it needs two material coefficients (𝑐1, 𝑐2). In this case, it is to be used with the
large strain incompressibility condition.

The plane strain hyperelastic law takes a pointer on a hyperelastic law as a parameter and performs a 2D
plane strain approximation.

md is the model variable, mim the integration method, varname the string being the name of the
variable on which the term is added, dataname the string being the name of the data in the model
representing the coefficients of the law (can be constant or describe on a finite element method) and
region is the region on which the term is considered (by default, all the mesh).

The program nonlinear_elastostatic.cc in tests directory and
demo_nonlinear_elasticity.m in interface/tests/matlab directory are some
examples of use of this brick with or without an incompressibility condition.

Note that the addition of a new hyperelastic constitutive law consists in furnishing the expression
of the strain energy, the stress tensor and the derivative of the stress tensor. See the file getfem/
getfem_nonlinear_elasticity.cc for more details. In particular, expression of the invariants
and their derivatives are available.

A function which computes the Von Mises or Tresca stresses is also available:

VM = compute_Von_Mises_or_Tresca
(md, varname, AHL, dataname, mf_vm, VM, tresca)

It returns a vector of the degrees of freedom of the Von Mises or Tresca stress on the finite element
method mf_vm. tresca is a boolean whose value should be true for Tresca stress and false for
Von Mises stress.

25.3 Add a large strain incompressibility brick to a model

This brick adds an incompressibility condition in a large strain problem of type

det(𝐼 +∇𝑢) = 1,

A Lagrange multiplier representing the pressure is introduced in a mixed formulation. The function
adding this brick to a model is

174 Chapter 25. Finite strain Elasticity bricks

User Documentation, Release 5.4.2

ind = add_nonlinear_incompressibility_brick
(md, mim, varname, multname, region = -1)

where md is the model, mim the integration method, varname the variable of the model on which the
incompressibility condition is added, multanme the multiplier variable corresponding to the pressure
(be aware that at least a linear Ladyzhenskaja-Babuska-Brezzi inf-sup condition is satisfied between the
f.e.m. of the variable and the one of the multiplier). region is an optional parameter correponding to
the mesh region on which the term is considered (by default, all the mesh).

25.4 High-level generic assembly versions

The generic weak form language (GWFL) gives access to the hyperelastic potential and constitutive laws
implemented in GetFEM. This allows to directly use them in the language, for instance using a generic
assembly brick in a model or for interpolation of certain quantities (the stress for instance).

Here is the list of nonlinear operators in the language which can be useful for nonlinear elasticity:

Det(M) % determinant of the matrix M
Trace(M) % trace of the matrix M
Matrix_i2(M) % second invariant of M (in 3D):
→˓(sqr(Trace(m)) - Trace(m*m))/2
Matrix_j1(M) % modified first invariant of M:
→˓Trace(m)pow(Det(m),-1/3).
Matrix_j2(M) % modified second invariant of M:
→˓Matrix_I2(m)*pow(Det(m),-2/3).
Right_Cauchy_Green(F) % F' * F
Left_Cauchy_Green(F) % F * F'
Green_Lagrangian(F) % (F'F - Id(meshdim))/2
Cauchy_stress_from_PK2(sigma, Grad_u) % (Id+Grad_u)*sigma*(I+Grad_u')/
→˓det(I+Grad_u)

The potentials:

Saint_Venant_Kirchhoff_potential(Grad_u, [lambda; mu])
Plane_Strain_Saint_Venant_Kirchhoff_potential(Grad_u, [lambda; mu])
Generalized_Blatz_Ko_potential(Grad_u, [a;b;c;d;n])
Plane_Strain_Generalized_Blatz_Ko_potential(Grad_u, [a;b;c;d;n])
Ciarlet_Geymonat_potential(Grad_u, [lambda;mu;a])
Plane_Strain_Ciarlet_Geymonat_potential(Grad_u, [lambda;mu;a])
Incompressible_Mooney_Rivlin_potential(Grad_u, [c1;c2])
Plane_Strain_Incompressible_Mooney_Rivlin_potential(Grad_u, [c1;c2])
Compressible_Mooney_Rivlin_potential(Grad_u, [c1;c2;d1])
Plane_Strain_Compressible_Mooney_Rivlin_potential(Grad_u, [c1;c2;d1])
Incompressible_Neo_Hookean_potential(Grad_u, [c1])
Plane_Strain_Incompressible_Neo_Hookean_potential(Grad_u, [c1])
Compressible_Neo_Hookean_potential(Grad_u, [c1;d1])
Plane_Strain_Compressible_Neo_Hookean_potential(Grad_u, [c1;d1])
Compressible_Neo_Hookean_Bonet_potential(Grad_u, [lambda;mu])
Plane_Strain_Compressible_Neo_Hookean_Bonet_potential(Grad_u, [lambda;mu])
Compressible_Neo_Hookean_Ciarlet_potential(Grad_u, [lambda;mu])
Plane_Strain_Compressible_Neo_Hookean_Ciarlet_potential(Grad_u, [lambda;
→˓mu])

The second Piola-Kirchhoff stress tensors:

25.4. High-level generic assembly versions 175

User Documentation, Release 5.4.2

Saint_Venant_Kirchhoff_PK2(Grad_u, [lambda; mu])
Plane_Strain_Saint_Venant_Kirchhoff_PK2(Grad_u, [lambda; mu])
Generalized_Blatz_Ko_PK2(Grad_u, [a;b;c;d;n])
Plane_Strain_Generalized_Blatz_Ko_PK2(Grad_u, [a;b;c;d;n])
Ciarlet_Geymonat_PK2(Grad_u, [lambda;mu;a])
Plane_Strain_Ciarlet_Geymonat_PK2(Grad_u, [lambda;mu;a])
Incompressible_Mooney_Rivlin_PK2(Grad_u, [c1;c2])
Plane_Strain_Incompressible_Mooney_Rivlin_PK2(Grad_u, [c1;c2])
Compressible_Mooney_Rivlin_PK2(Grad_u, [c1;c2;d1])
Plane_Strain_Compressible_Mooney_Rivlin_PK2(Grad_u, [c1;c2;d1])
Incompressible_Neo_Hookean_PK2(Grad_u, [c1])
Plane_Strain_Incompressible_Neo_Hookean_PK2(Grad_u, [c1])
Compressible_Neo_Hookean_PK2(Grad_u, [c1;d1])
Plane_Strain_Compressible_Neo_Hookean_PK2(Grad_u, [c1;d1])
Compressible_Neo_Hookean_Bonet_PK2(Grad_u, [lambda;mu])
Plane_Strain_Compressible_Neo_Hookean_Bonet_PK2(Grad_u, [lambda;mu])
Compressible_Neo_Hookean_Ciarlet_PK2(Grad_u, [lambda;mu])
Plane_Strain_Compressible_Neo_Hookean_Ciarlet_PK2(Grad_u, [lambda;mu])

Note that the derivatives with respect to the material parameters have not been implemented apart for the
Saint Venant Kirchhoff hyperelastic law. Therefore, it is not possible to make the parameter depend on
other variables of a model (derivatives are not necessary complicated to implement but for the moment,
only a wrapper with old implementations has been written).

Note that the coupling of models is to be done at the weak formulation level. In a general way, it is
recommended not to use the potential to define a problem. Main couplings cannot be obtained at the
potential level. Thus the use of potential should be restricted to the actual computation of the potential.

An example of use to add a Saint Venant-Kirchhoff hyperelastic term to a variable u in a model or a
ga_workspace is given by the addition of the following assembly string:

"((Id(meshdim)+Grad_u)*(Saint_Venant_Kirchhoff_PK2(Grad_u,[lambda;
→˓mu]))):Grad_Test_u"

Note that in that case, lambda and mu have to be declared data of the model/ga_workspace. It is of
course possible to replace them by explicit constants or expressions depending on several data.

Concerning the incompressible Mooney-Rivlin law, it has to be completed by an incompressibility term.
For instance by adding the following incompressibility brick:

ind = add_finite_strain_incompressibility_brick(md, mim, varname, multname,
→˓ region = -1);

This brick just adds the term p*(1-Det(Id(meshdim)+Grad_u)) if p is the multiplier and u the
variable which represents the displacement.

The addition of an hyperelastic term to a model can also be done thanks to the following function:

ind = add_finite_strain_elasticity_brick(md, mim, lawname, varname, params,
region = size_type(-1));

where md is the model, mim the integration method, varname the variable of the model rep-
resenting the large strain displacement, lawname is the constitutive law name which could
be Saint_Venant_Kirchhoff, Generalized_Blatz_Ko, Ciarlet_Geymonat,
Incompressible_Mooney_Rivlin, Compressible_Mooney_Rivlin,
Incompressible_Neo_Hookean, Compressible_Neo_Hookean,

176 Chapter 25. Finite strain Elasticity bricks

User Documentation, Release 5.4.2

Compressible_Neo_Hookean_Bonet or Compressible_Neo_Hookean_Ciarlet.
params is a string representing the parameters of the law defined as a small vector or a vector field.

The Von Mises stress can be interpolated with the following function:

void compute_finite_strain_elasticity_Von_Mises(md, varname, lawname,
→˓params, mf_vm, VM,

rg=mesh_region::all_
→˓convexes());

where md is the model, varname the variable of the model representing the large strain displacement,
lawname is the constitutive law name (see previou brick), params is a string representing the pa-
rameters of the law, mf_vm a (preferably discontinuous) Lagrange finite element method on which
the interpolation will be done and VM a vector of type model_real_plain_vector in which the
interpolation will be stored.

25.4. High-level generic assembly versions 177

User Documentation, Release 5.4.2

178 Chapter 25. Finite strain Elasticity bricks

CHAPTER 26

Small strain plasticity

A framework for the approximation of plasticity models in GetFEM. See in src/
getfem_plasticity.cc and interface/src/gf_model_set.cc for the brick imple-
mentation and to extend the implementation to new plasticity models.

26.1 Theoretical background

We present a short introduction to small strain plasticity. We refer mainly to [SI-HU1998] and
[SO-PE-OW2008] for a more detailed presentation.

26.1.1 Additive decomposition of the small strain tensor

Let Ω ⊂ IR3 be the reference configuration of a deformable body and 𝑢 : Ω → IR3 be the displacement
field. Small strain plasticity is based on the additive decomposition of the small strain tensor 𝜀(𝑢) =
∇𝑢+∇𝑢𝑇

2
in

𝜀(𝑢) = 𝜀𝑒 + 𝜀𝑝

where 𝜀𝑒 is the elastic part of the strain tensor and 𝜀𝑝 the plastic one.

26.1.2 Internal variables, free energy potential and elastic law

We consider

𝛼 : Ω → IRd𝛼 ,

a vector field of 𝑑𝛼 strain type internal variables (𝑑𝛼 = 0 if no internal variables are considered). We
consider also a free energy potential

𝜓(𝜀𝑒, 𝛼),

179

User Documentation, Release 5.4.2

such that corresponding stress type variables are determined by

𝜎 =
𝜕𝜓

𝜕𝜀𝑒
(𝜀𝑒, 𝛼), 𝐴 =

𝜕𝜓

𝜕𝛼
(𝜀𝑒, 𝛼),

where 𝜎 is the Cauchy stress tensor and 𝐴 the stress type internal variables. The plastic dissipation is
given by

𝜎 : �̇�𝑝 −𝐴.�̇� ≥ 0.

In the standard cases, 𝜓(𝜀𝑒, 𝛼) is decomposed into

𝜓(𝜀𝑒, 𝛼) = 𝜓𝑒(𝜀𝑒) + 𝜓𝑝(𝛼).

In the case of linearized elasticity, one has 𝜓𝑒(𝜀𝑒) = 1
2(𝒜𝜀

𝑒) : 𝜀𝑒 where 𝒜 is the fourth order elasticity
tensor. For isotropic linearized elasticity this expression reduces to 𝜓𝑒(𝜀𝑒) = 𝜇dev(𝜀𝑒) : dev(𝜀𝑒) +
1
2𝐾(tr(𝜀𝑒))2 where 𝜇 is the shear modulus and 𝐾 = 𝜆+ 2𝜇/3 is the bulk modulus.

26.1.3 Plastic potential, yield function and plastic flow rule

Plastic yielding is supposed to occur when the stress attains a critical value. This limit is determined by
a yield function 𝑓(𝜎,𝐴) and the condition

𝑓(𝜎,𝐴) ≤ 0.

The surface 𝑓(𝜎,𝐴) = 0 is the yield surface where the plastic deformation may occur.

Let us also consider the plastic potential Ψ(𝜎,𝐴), (convex with respect to its both variables) which
determines the plastic flow direction in the sense that the flow rule is defined as

�̇�𝑝 = 𝛾
𝜕Ψ

𝜕𝜎
(𝜎,𝐴), �̇� = −𝛾 𝜕Ψ

𝜕𝐴
(𝜎,𝐴),

with the additional complementarity condition

𝑓(𝜎,𝐴) ≤ 0, 𝛾 ≥ 0, 𝑓(𝜎,𝐴)𝛾 = 0.

The variable 𝛾 is called the plastic multiplier. Note that when 𝜓(𝜀𝑒, 𝛼), 𝑓(𝜎,𝐴) or Ψ(𝜎,𝐴) are
not differentiable, subdifferentials have to be used. Associated plasticity corresponds to the choice
Ψ(𝜎,𝐴) = 𝑓(𝜎,𝐴).

26.1.4 Initial boundary value problem

The weak formulation of a dynamic elastoplastic problem can be written, for an arbitrary kinematically
admissible test function 𝑣, as follows:⃒⃒⃒⃒

⃒⃒
∫︀
Ω 𝜌�̈� · 𝑣 + 𝜎 : ∇𝑣𝑑𝑥 =

∫︀
Ω 𝑓�̇�𝑑𝑥+

∫︀
Γ𝑁

𝑔�̇�𝑑𝑥,

𝑢(0, 𝑥) = 𝑢0(𝑥), �̇�(0) = v0(𝑥),
𝜀𝑝(0, 𝑥) = 𝜀𝑝0, 𝛼(0, 𝑥) = 𝛼0,

for 𝑢0, v0, 𝜀
𝑝
0, 𝛼0 being initial values and 𝑓 and 𝑔 being prescribed forces in the interior of domain Ω and

on the part of the boundary Γ𝑁 .

Note that plasticity models are often applied on quasi-static problems which correspond to the term 𝜌�̈�
being neglected.

180 Chapter 26. Small strain plasticity

User Documentation, Release 5.4.2

Given a time step Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, from time 𝑡𝑛 to 𝑡𝑛+1, we will denote in the sequel 𝑢𝑛, 𝜀
𝑝
𝑛 and 𝛼𝑛 the

approximations at time 𝑡𝑛 of 𝑢(𝑡𝑛), 𝜀
𝑝
𝑛(𝑡𝑛) and 𝛼(𝑡𝑛) respectively. These approximations correspond to

the chosen time integration scheme (for instance one of the proposed schemes in The model tools for the
integration of transient problems) which can be different than the time integration scheme used for the
integration of the flow rule (see below).

26.2 Flow rule integration

The plastic flow rule has to be integrated with its own time integration scheme. Among standards
schemes, the backward Euler scheme, the 𝜃-scheme (or generalized trapezoidal rule) and the generalized
mid-point scheme are the most commonly used in that context. We make here the choice of the 𝜃-scheme
(𝜃 = 1 corresponds to the backward Euler scheme as a special case).

Let 𝑢𝑛+1 be the displacement at the considered time step and 𝑢𝑛 at the previous one.

The 𝜃-scheme for the integration of the plastic flow rules reads as

𝜀𝑝𝑛+1 − 𝜀𝑝𝑛 = (1− 𝜃)Δ𝑡𝛾𝑛
𝜕Ψ

𝜕𝜎
(𝜎𝑛, 𝐴𝑛) + 𝜃Δ𝑡𝛾𝑛+1

𝜕Ψ

𝜕𝜎
(𝜎𝑛+1, 𝐴𝑛+1), (26.1)

𝛼𝑛+1 − 𝛼𝑛 = −(1− 𝜃)Δ𝑡𝛾𝑛
𝜕Ψ

𝜕𝐴
(𝜎𝑛, 𝐴𝑛)− 𝜃Δ𝑡𝛾𝑛+1

𝜕Ψ

𝜕𝐴
(𝜎𝑛+1, 𝐴𝑛+1), (26.2)

with the complementary condition

𝑓(𝜎𝑛+1, 𝐴𝑛+1) ≤ 0, 𝛾𝑛+1 ≥ 0, 𝑓(𝜎𝑛+1, 𝐴𝑛+1)𝛾𝑛+1 = 0.

where 0 < 𝜃 ≤ 1 is the parameter of the 𝜃-scheme. We exclude 𝜃 = 0 because we will not consider
explicit integration of plasticity. Let us recall that 𝜃 = 1 corresponds to the backward Euler scheme and
𝜃 = 1/2 to the Crank-Nicolson scheme (or trapezoidal rule) which is a second order consistent scheme.
Note that the complementarity condition for the quantities at time step 𝑛 is prescribed at the previous
time step (𝜎𝑛, 𝛼𝑛, and 𝛾𝑛 are supposed to be already determined).

A solution would be to solve the whole problem with all the unknows, that is
𝑢𝑛+1, 𝛾𝑛+1, 𝜀

𝑝
𝑛+1 and 𝐴𝑛+1. This is of course possible but would be a rather expensive strategy

because of the resulting high number of degrees of freedom. A classical strategy (the return mapping
one for instance, see [SO-PE-OW2008] or the closest point projection one) consist in integrating locally
the plastic flow on each Gauss point of the considered integration method separately, or more precisely
to consider on each Gauss point the maps

E 𝑝 : (𝑢𝑛+1, 𝜁𝑛, 𝜂𝑛) ↦→ 𝜀𝑝𝑛+1

A : (𝑢𝑛+1, 𝜁𝑛, 𝜂𝑛) ↦→ 𝛼𝑛+1

with 𝜂𝑛, 𝜁𝑛 the right hand side of equations (26.1), (26.2), i.e.

𝜁𝑛 = 𝜀𝑝𝑛 + (1− 𝜃)Δ𝑡𝛾𝑛
𝜕Ψ

𝜕𝜎
(𝜎𝑛, 𝐴𝑛),

𝜂𝑛 = 𝛼𝑛 − (1− 𝜃)Δ𝑡𝛾𝑛
𝜕Ψ

𝜕𝐴
(𝜎𝑛, 𝐴𝑛)

This means in particular that (𝜀𝑝𝑛+1, 𝛼𝑛+1) = (E 𝑝(𝑢𝑛+1, 𝜁𝑛, 𝜂𝑛),A (𝑢𝑛+1, 𝜁𝑛, 𝜂𝑛)) is the solution to
equations (26.1) and (26.2). Both these maps and their tangent moduli (usually called consistent tangent
moduli) are then used in the global solve of the problem with a Newton method and for 𝑢𝑛+1 the unique
remaining variable. The advantage of the return mapping strategy is that the unique variable of the

26.2. Flow rule integration 181

User Documentation, Release 5.4.2

global solve is the displacement 𝑢𝑛+1. A nonlinear solve on each Gauss point is often necessary which
is usualy performed with a local Newton method.

In GetFEM we propose both the return mapping strategy and also an alternative strategy developed
below which is mainly inspired from [PO-NI2016], [SE-PO-WO2015] and [HA-WO2009] and allow
more simple tangent moduli. It consists in keeping (a multiple of) 𝛾𝑛+1 as an additional unknown with
respect to 𝑢𝑛+1. As we will see, this will allow a more generic treatment of the yield functions, the price
for the simplicity being this additional unknown scalar field.

First, we consider an additional (and optional) given function 𝛼(𝜎𝑛+1, 𝐴𝑛+1) > 0 whose interest will
appear later on (it will allow simple local inverses) and the new unknown scalar field

𝜉𝑛+1 =
𝛾𝑛+1

𝛼(𝜎𝑛+1, 𝐴𝑛+1)
,

so that our two main unknows are now 𝑢𝑛+1 and 𝜉𝑛+1. The discretized plastic flow rule integration now
reads:

𝜀𝑝𝑛+1 − 𝜀𝑝𝑛 = (1− 𝜃)𝛼(𝜎𝑛, 𝐴𝑛)Δ𝑡𝜉𝑛
𝜕Ψ

𝜕𝜎
(𝜎𝑛, 𝐴𝑛) + 𝜃𝛼(𝜎𝑛+1, 𝐴𝑛+1)Δ𝑡𝜉𝑛+1

𝜕Ψ

𝜕𝜎
(𝜎𝑛+1, 𝐴𝑛+1),

(26.3)

𝛼𝑛+1 − 𝛼𝑛 = (1− 𝜃)𝛼(𝜎𝑛, 𝐴𝑛)Δ𝑡𝜉𝑛
𝜕Ψ

𝜕𝐴
(𝜎𝑛, 𝐴𝑛) + 𝜃𝛼(𝜎𝑛+1, 𝐴𝑛+1)Δ𝑡𝜉𝑛+1

𝜕Ψ

𝜕𝐴
(𝜎𝑛+1, 𝐴𝑛+1),

(26.4)

𝑓(𝜎𝑛+1, 𝐴𝑛+1) ≤ 0, 𝜉𝑛+1 ≥ 0, 𝑓(𝜎𝑛+1, 𝐴𝑛+1)𝜉𝑛+1 = 0. (26.5)

For 𝑢𝑛+1 and 𝜉𝑛+1 be given, we define the two maps

Ẽ 𝑝 : (𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛, 𝜂𝑛) ↦→ 𝜀𝑝𝑛+1

Ã : (𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛, 𝜂𝑛) ↦→ 𝛼𝑛+1

where the pair (𝜀𝑝𝑛+1, 𝛼𝑛+1) = (Ẽ 𝑝(𝑢𝑛+1, 𝜃𝜉𝑛+1, 𝜁𝑛, 𝜂𝑛), Ã (𝑢𝑛+1, 𝜃𝜉𝑛+1, 𝜁𝑛, 𝜂𝑛)) is the solution to
equations (26.3), (26.4) (without the consideration of (26.5)). We will see later, that, at least for simple
isotropic plastic flow rules, these maps have a simple expression, even sometimes a linear one with
respect to 𝑢𝑛+1.

Still 𝑢𝑛+1 and 𝜉𝑛+1 be given the stress 𝜎𝑛+1 reads

𝜎𝑛+1 =
𝜕𝜓𝑒

𝜕𝜀𝑒
(𝜀(𝑢𝑛+1)− 𝜀𝑝𝑛+1).

𝐴𝑛+1 =
𝜕𝜓𝑝

𝜕𝛼
(𝛼𝑛+1).

The complementarity equation (26.5) is then prescribed with the use of a well chosen complementarity
function, as in [HA-WO2009] for 𝑟 > 0 such as:∫︁

Ω
(𝜉𝑛+1 − (𝜉𝑛+1 + 𝑟𝑓(𝜎𝑛+1, 𝐴𝑛+1))+)𝜆𝑑𝑥 = 0,∀𝜆

or ∫︁
Ω
(𝑓(𝜎𝑛+1 + (−𝑓(𝜎𝑛+1, 𝐴𝑛+1)− 𝜉𝑛+1/𝑟)+, 𝐴𝑛+1))𝜆𝑑𝑥 = 0, ∀𝜆

NOTE : The notation Δ𝜉𝑛+1 = Δ𝑡𝜉𝑛+1 is often used in the litterature. The choice here is to preserve
the distinction between the two quantities, mainly because ot the possible use of adaptative time step
: when the time step is changing, the value 𝜉𝑛 has to be multiplied by the new time step, so that it is
preferable to store 𝜉𝑛 instead of Δ𝜉𝑛 when using the 𝜃-scheme.

182 Chapter 26. Small strain plasticity

User Documentation, Release 5.4.2

26.2.1 Plane strain approximation

A plane strain approximation is a 2D problem which corresponds to the deformation of a long cylindrical
object where the strain in the length direction (assumed to be along the 𝑧 axis) is considered small
compared to the ones in the other directions and is neglected. It result in a plane strain tensor of the form

𝜀(𝑢) =

⎛⎝𝜀1,1 𝜀1,2 0
𝜀1,2 𝜀2,2 0
0 0 0

⎞⎠ .

We denote

𝜀(𝑢) =

(︂
𝜀1,1 𝜀1,2
𝜀1,2 𝜀2,2

)︂
the non neglected components of the strain tensor. In the decomposition of plastic and elastic part of the
strain tensor, we assume

𝜀𝑝1,3 = 𝜀𝑝2,3 = 𝜀𝑒1,3 = 𝜀𝑒2,3 = 0

and

𝜀𝑒3,3 + 𝜀𝑝3,3 = 𝜀3,3 = 0.

The adaptation to the plane strain approximation to plastic model is most of the time an easy task. An
isotropic linearized elastic response reads

𝜎 = 𝜆tr(𝜀(𝑢))𝐼 + 2𝜇(𝜀(𝑢)− 𝜀𝑝),

and thus

�̄� = 𝜆tr(𝜀(𝑢))𝐼 + 2𝜇(𝜀(𝑢)− 𝜀𝑝),

The nonzero 𝜎3,3 component of the stress tensor is given by

𝜎3,3 = 𝜆tr(𝜀(𝑢))− 2𝜇𝜀𝑝3,3

Note that in the common case where isochoric plastic strain is assumed, one has

tr(𝜀𝑝) = 0 IRightarrow 𝜀p3,3 = −(𝜀p1,1 + 𝜀p2,2).

26.2.2 Plane stress approximation

The plane stress approximation describe generally the 2D membrane deformation of a thin plate. It
consist in prescribing the stress tensor to have only in-plane nonzero components, i.e.

𝜎 =

⎛⎝𝜎1,1 𝜎1,2 0
𝜎1,2 𝜎2,2 0
0 0 0

⎞⎠ .

We will still denote

�̄� =

(︂
𝜎1,1 𝜎1,2
𝜎1,2 𝜎2,2

)︂
26.2. Flow rule integration 183

User Documentation, Release 5.4.2

the in-plane components of the stress tensor. For elastoplasticity, it consists generally to apply the 2D
plastic flow rule, prescribing the out-plane components of the stress tensor to be zero with the additionnal
variables 𝜀𝑒1,3, 𝜀𝑒2,3, 𝜀𝑒3,3 being unknown (see for instance [SO-PE-OW2008]).

For an isotropic linearized elastic response, one has 𝜎 = 𝜆tr(𝜀𝑒) + 2𝜇𝜀𝑒 such that

𝜀𝑒 =

⎛⎝𝜀𝑒1,1 𝜀𝑒1,2 0

𝜀𝑒1,2 𝜀𝑒2,2 0

0 0 𝜀𝑒3,3

⎞⎠ .

with

𝜀𝑒3,3 = − 𝜆

𝜆+ 2𝜇
(𝜀𝑒1,1 + 𝜀𝑒2,2)

so that

�̄� = 𝜆*tr(𝜀𝑒) + 2𝜇𝜀𝑒 with 𝜆* =
2𝜇𝜆

𝜆+ 2𝜇
(26.6)

Moreover

‖Dev(𝜎)‖ =

(︂
‖�̄�‖2 − 1

3
(tr(�̄�))2

)︂1/2

. (26.7)

Note that in the case where isochoric plastic strain is assumed, one still has

tr(𝜀𝑝) = 0 IRightarrow 𝜀p3,3 = −(𝜀p1,1 + 𝜀p2,2).

26.3 Some classical laws

Tresca : 𝜌(𝜎) ≤ 𝜎𝑦 where 𝜌(𝜎) spectral radius of the Cauchy stress tensor and 𝜎𝑦 the uniaxial yield
stress (which may depend on some hardening internal variables).

Von Mises : ‖Dev(𝜎)‖ ≤
√︁

2
3𝜎𝑦 where Dev(𝜎) = 𝜎 − 1

3 tr(𝜎)𝐼 the deviatoric part of 𝜎 and ‖𝜎‖ =
√
𝜎 : 𝜎.

26.3.1 Perfect isotropic associated elastoplasticity with Von-Mises criterion
(Prandl-Reuss model)

There is no internal variables and we consider an isotropic elastic response. The flow rule reads

�̇�𝑝 = 𝛾
Dev(𝜎)

‖Dev(𝜎)‖

This corresponds to Ψ(𝜎) = 𝑓(𝜎) = ‖Dev(𝜎)‖ −
√︁

2
3𝜎𝑦.

The 𝜃-scheme for the integration of the plastic flow rule reads:

𝜀𝑝𝑛+1 − 𝜀𝑝𝑛 = (1− 𝜃)𝛼(𝜎𝑛)Δ𝑡𝜉𝑛
Dev(𝜎𝑛)

‖Dev(𝜎𝑛)‖
+ 𝜃𝛼(𝜎𝑛+1)Δ𝑡𝜉𝑛+1

Dev(𝜎𝑛+1)

‖Dev(𝜎𝑛+1)‖
.

Choosing the factor 𝛼(𝜎𝑛) = ‖Dev(𝜎𝑛)‖ and still with 𝜉𝑛 =
𝛾𝑛

𝛼(𝜎𝑛)
this gives the equation

𝜀𝑝𝑛+1 − 𝜀𝑝𝑛 = (1− 𝜃)Δ𝑡𝜉𝑛Dev(𝜎𝑛) + 𝜃Δ𝑡𝜉𝑛+1Dev(𝜎𝑛+1).

184 Chapter 26. Small strain plasticity

User Documentation, Release 5.4.2

Since Dev(𝜎𝑛+1) = 2𝜇Dev(𝜀(𝑢𝑛+1))− 2𝜇𝜀𝑝𝑛+1 this directly gives:

Ẽ 𝑝(𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛) = 𝜁𝑛 +

(︂
1− 1

1 + 2𝜇𝜃Δ𝑡𝜉𝑛+1

)︂
(Dev(𝜀(𝑢𝑛+1))− 𝜁𝑛),

which is a linear expression with respect to 𝑢𝑛+1 (but not with respect to 𝜉𝑛+1).

Moreover, 𝜁𝑛 is defined by

𝜁𝑛 = 𝜀𝑝𝑛 + (1− 𝜃)Δ𝑡𝜉𝑛(Dev(𝜎𝑛)) = 𝜀𝑝𝑛 + (1− 𝜃)Δ𝑡𝜉𝑛2𝜇 (Dev(𝜀(𝑢𝑛))− 𝜀𝑝𝑛) .

Elimination of the multiplier (for the return mapping approach)

One has

‖Dev(𝜎𝑛+1)‖ = 2𝜇‖Dev(𝜀(𝑢𝑛+1))− 𝜀𝑝𝑛+1‖ =
2𝜇

1 + 2𝜇𝜃Δ𝑡𝜉𝑛+1
‖Dev(𝜀(𝑢𝑛+1))− 𝜁𝑛‖,

Thus, denoting 𝐵 = Dev(𝜀(𝑢𝑛+1))− 𝜁𝑛, either

2𝜇‖𝐵‖ ≤
√︂

2

3
𝜎𝑦,

and 𝜉𝑛+1 = 0, i.e. we are in the elastic case, or ‖Dev(𝜎𝑛+1)‖ =
√︁

2
3 and one obtains

1 + 2𝜇𝜃Δ𝑡𝜉𝑛+1 =
2𝜇‖𝐵‖√︁

2
3𝜎𝑦

,

and thus

𝜀𝑝𝑛+1 = 𝜁𝑛 +

(︃
1−

√︂
2

3

𝜎𝑦
2𝜇‖𝐵‖

)︃
𝐵.

The two options can be summarized by

𝜀𝑝𝑛+1 = E 𝑝(𝑢𝑛+1, 𝜁𝑛) = 𝜁𝑛 +

(︃
1−

√︂
2

3

𝜎𝑦
2𝜇‖𝐵‖

)︃
+

𝐵.

The multiplier 𝜉𝑛+1 (needed for the 𝜃-scheme for 𝜃 ̸= 1) is given by

𝜉𝑛+1 =
1

𝜃Δ𝑡

(︃√︂
3

2

‖𝐵‖
𝜎𝑦

− 1

2𝜇

)︃
+

.

Plane strain approximation

The plane strain approximation has the same expression replacing the 3D strain tensors by the in-plane
ones 𝜀𝑝 and 𝜀(𝑢𝑛+1).

¯̃E 𝑝(𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛) = 𝜁𝑛 +

(︂
1− 1

1 + 2𝜇𝜃Δ𝑡𝜉𝑛+1

)︂
(Dev(𝜀(𝑢𝑛+1))− 𝜁𝑛),

where Dev(𝜀) = 𝜀− tr(𝜀)
3
𝐼 is the 2D restriction of the 3D deviator.

Moreover, for the yield condition,

‖Dev(𝜎)‖2 = 4𝜇2

(︃
‖Dev𝜀(𝑢)− 𝜀𝑝‖2 +

(︂
tr(𝜀(𝑢))

3
− tr(𝜀𝑝)

)︂2
)︃
.

26.3. Some classical laws 185

User Documentation, Release 5.4.2

And for the elimination of the multiplier,

Ē 𝑝(�̄�𝑛+1, 𝜀
𝑝
𝑛) = 𝜁𝑝𝑛 +

(︃
1−

√︂
2

3

𝜎𝑦
2𝜇‖𝐵‖

)︃
+

�̄�

with �̄� = Dev(𝜀(𝑢𝑛+1))− 𝜁𝑛 and ‖𝐵‖2 = ‖Dev(𝜀(𝑢𝑛+1))− 𝜁𝑛‖2 +
(︂

tr(𝜀(𝑢𝑛+1))

3
− tr(𝜁𝑛)

)︂2

.

Plane stress approximation

For plane stress approximation, using (26.6) we deduce from the expression of the 3D case

𝜀𝑝𝑛+1 =
1

1 + 2𝜇𝜃Δ𝜉

(︂
𝜁𝑛 + 2𝜇𝜃Δ𝜉

(︂
𝜀(𝑢𝑛+1)−

2𝜇

3(𝜆+ 2𝜇)
(tr(𝜀(𝑢𝑛+1))− tr(𝜀𝑝𝑛+1))𝐼

)︂)︂
,

since Dev(𝜀(𝑢)) = 𝜀(𝑢) − 2𝜇

3(𝜆+ 2𝜇)
(tr(𝜀(𝑢)) − tr(𝜀𝑝)). Of course, this relation still

has to be inverted. Denoting 𝛼 = 1 + 2𝜇𝜃Δ𝜉, 𝛽 =
4𝜇2𝜃Δ𝜉

3𝜆+ 6𝜇
and 𝐶 = 𝜁𝑛 +

2𝜇𝜃Δ𝜉

(︂
𝜀(𝑢𝑛+1)−

2𝜇

3(𝜆+ 2𝜇)
(tr(𝜀(𝑢𝑛+1))))𝐼

)︂
one obtains

𝜀𝑝𝑛+1 =
𝛽tr(𝐶)

𝛼(𝛼− 2𝛽)
𝐼 +

1

𝛼
𝐶.

Moreover, for the yield condition, expression (26.7) can be used.

26.3.2 Isotropic elastoplasticity with linear isotropic and kinematic hardening
and Von-Mises criterion

We consider an isotropic elastic reponse and the internal variable 𝛼 : Ω → IR being the accumulated
plastic strain which satisfies

�̇� =

√︂
2

3
𝛾

For 𝐻𝑖 the isotropic hardening modulus, the linear hardening consists in

𝜓𝑝(𝛼) =
1

2
𝐻𝑖𝛼

2

i.e. 𝐴 = 𝐻𝑖𝛼 and a uniaxial yield stress defined by

𝜎𝑦(𝑎) = 𝜎𝑦0 +𝐴 = 𝜎𝑦0 +𝐻𝑖𝛼,

for 𝜎𝑦0 the initial uniaxial yield stress. The yield function (and plastic potential since this is an associated
plastic model) can be defined by

Ψ(𝜎,𝐴) = 𝑓(𝜎,𝐴) = ‖Dev(𝜎 − 2

3
𝐻𝑘𝜀

𝑝)‖ −
√︂

2

3
(𝜎𝑦0 +𝐴),

where 𝐻𝑘 is the kinematic hardening modulus. The same computation as in the previous section leads
to

Ẽ 𝑝(𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛) = 𝜁𝑛 +
1

2(𝜇+𝐻𝑘/3)

(︂
1− 1

1 + 2(𝜇+𝐻𝑘/3)𝜃Δ𝑡𝜉𝑛+1

)︂
(2𝜇Dev(𝜀(𝑢𝑛+1))− 2(𝜇+𝐻𝑘/3)𝜁𝑛)

186 Chapter 26. Small strain plasticity

User Documentation, Release 5.4.2

Ã (𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛, 𝜂𝑛) = 𝜂𝑛 +

√︂
2

3
𝜃Δ𝑡𝜉𝑛+1‖Dev(𝜎𝑛+1 − 2

3𝐻𝑘𝜀
𝑝
𝑛+1)‖

= 𝜂𝑛 +

√︂
2

3
𝜃Δ𝑡𝜉𝑛+1‖2𝜇Dev(𝜀(𝑢𝑛+1))− 2(𝜇+𝐻𝑘/3)𝜀

𝑝
𝑛+1‖

= 𝜂𝑛 +

√︂
2

3

𝜃Δ𝑡𝜉𝑛+1

1 + 2(𝜇+𝐻𝑘/3)𝜃Δ𝑡𝜉𝑛+1
‖2𝜇Dev(𝜀(𝑢𝑛+1))− 2(𝜇+𝐻𝑘/3)𝜁𝑛‖

= 𝜂𝑛 +

√︂
2

3

1

2(𝜇+𝐻𝑘/3)

(︂
1− 1

1 + 2(𝜇+𝐻𝑘/3)𝜃Δ𝑡𝜉𝑛+1

)︂
‖2𝜇Dev(𝜀(𝑢𝑛+1))− 2(𝜇+𝐻𝑘/3)𝜁𝑛‖

where 𝜁𝑛 and 𝜂𝑛 are defined by

𝜁𝑛 = 𝜀𝑝𝑛 + (1− 𝜃)Δ𝑡𝜉𝑛(Dev(𝜎𝑛)−
2

3
𝐻𝑘𝜀

𝑛
𝑝) = 𝜀𝑝𝑛 + (1− 𝜃)Δ𝑡𝜉𝑛

(︀
2𝜇Dev(𝜀(𝑢𝑛))− 2(𝜇+𝐻𝑘/3)𝜀

𝑛
𝑝

)︀
,

𝜂𝑛 = 𝛼𝑛 + (1− 𝜃)

√︂
2

3
Δ𝑡𝜉𝑛‖Dev(𝜎𝑛)−

2

3
𝐻𝑘𝜀

𝑛
𝑝‖ = 𝛼𝑛 + (1− 𝜃)

√︂
2

3
Δ𝑡𝜉𝑛‖2𝜇Dev(𝜀(𝑢𝑛))− 2(𝜇+𝐻𝑘/3)𝜀

𝑛
𝑝‖.

Note that the isotropic hardening modulus do not intervene in Ẽ 𝑝(𝑢𝑛+1, 𝜃Δ𝜉, 𝜀
𝑝
𝑛) but only in 𝑓(𝜎,𝐴).

Elimination of the multiplier (for the return mapping approach)

Denoting 𝛿 =
1

1 + 2(𝜇+𝐻𝑘/3)𝜃Δ𝑡𝜉𝑛+1
, 𝛽 =

1− 𝛿

2(𝜇+𝐻𝑘/3)
and 𝐵 = 2𝜇Dev(𝜀(𝑢𝑛+1)) − 2(𝜇 +

𝐻𝑘/3)𝜁𝑛 the expression for 𝜀𝑝𝑛+1 and 𝛼𝑛+1 becomes

𝜀𝑝𝑛+1 = 𝜁𝑛 + 𝛽𝐵, 𝛼𝑛+1 = 𝜂𝑛 +

√︂
2

3
𝛽‖𝐵‖, (26.8)

and the plastic constraint

𝛿‖𝐵‖ ≤
√︂

2

3
(𝜎𝑦0 +𝐻𝑖𝛼𝑛+1).

Thus, either we are in the elastic case, i.e. 𝜉𝑛+1 = 0, 𝛿 = 1 and

‖𝐵‖ ≤
√︂

2

3
(𝜎𝑦0 +𝐻𝑖𝜂𝑛),

or we are in the plastic case and 𝜉𝑛+1 > 0, 𝛿 < 1, 𝛿‖𝐵‖ =

√︂
2

3
(𝜎𝑦0 +𝐻𝑖𝛼𝑛+1) and (1− 𝛿) solves the

equation

‖𝐵‖ − (1− 𝛿)‖𝐵‖ =

√︂
2

3

(︃
𝜎𝑦0 +𝐻𝑖𝜂𝑛 +

√︂
2

3

𝐻𝑖

2(𝜇+𝐻𝑘/3)
(1− 𝛿)‖𝐵‖

)︃
,

which leads to

1− 𝛿 =
2(𝜇+𝐻𝑘/3)

‖𝐵‖(2𝜇+ 2
3(𝐻𝑘 +𝐻𝑖))

(︃
‖𝐵‖ −

√︂
2

3
(𝜎𝑦0 +𝐻𝑖𝜂𝑛)

)︃
The two cases can be summarized by

𝛽 =
1

‖𝐵‖(2𝜇+ 2
3(𝐻𝑘 +𝐻𝑖))

(︃
‖𝐵‖ −

√︂
2

3
(𝜎𝑦0 +𝐻𝑖𝜂𝑛)

)︃
+

which directly gives E 𝑝(𝑢𝑛+1, 𝜁𝑛, 𝜂𝑛) and A (𝑢𝑛+1, 𝜁𝑛, 𝜂𝑛) thanks to (26.8). The multiplier 𝜉𝑛+1 being
given by

𝜉𝑛+1 =
1

(2(𝜇+𝐻𝑘/3))𝜃Δ𝑡
(
1

𝛿
− 1) =

1

𝜃Δ𝑡

𝛽

1− 2(𝜇+𝐻𝑘/3)𝛽
.

26.3. Some classical laws 187

User Documentation, Release 5.4.2

Plane strain approximation

Still denoting 𝛿 =
1

1 + 2(𝜇+𝐻𝑘/3)𝜃Δ𝑡𝜉𝑛+1
, 𝛽 =

1− 𝛿

2(𝜇+𝐻𝑘/3)
, 𝐵 = 2𝜇Dev(𝜀(𝑢𝑛+1)) − 2(𝜇 +

𝐻𝑘/3)𝜁𝑛 and 𝐵 = 2𝜇𝐷𝑒𝑣(𝜀(𝑢𝑛+1))− 2(𝜇+𝐻𝑘/3)𝜁𝑛 its in-plane part, one has

¯̃E 𝑝(𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛) = 𝜁𝑛 + 𝛽𝐵,

Ã (𝑢𝑛+1, 𝜃Δ𝑡𝜉𝑛+1, 𝜁𝑛, 𝜂𝑛) = 𝜂𝑛 +

√︂
2

3
𝛽‖𝐵‖,

with

‖𝐵‖2 = ‖2𝜇Dev(𝜀(𝑢𝑛+1))− 2(𝜇+𝐻𝑘/3)𝜁𝑛‖2 +
(︂
2𝜇

tr(𝜀(𝑢𝑛+1))

3
− 2(𝜇+𝐻𝑘/3)tr(𝜁𝑛)

)︂2

.

The yield condition still reads

𝛿‖𝐵‖ ≤
√︂

2

3
(𝜎𝑦0 +𝐻𝑖𝛼𝑛+1).

and for the elimination of the multiplier, 𝛽 has the same expression as in the previous section adapting
the value of ‖𝐵‖. The expressions of 𝜁𝑛 and 𝜂𝑛 have to be adapted accoringly.

26.3.3 Souza-Auricchio elastoplasticity law (for shape memory alloys)

See for instance [GR-ST2015] for the justification of the construction of this flow rule. A Von-Mises
stress criterion together with an isotropic elastic response, no internal variables and a special type of
kinematic hardening is considered with a constraint ‖𝜀𝑝‖ ≤ 𝑐3. The plastic potential and yield function
have the form

Ψ(𝜎) = 𝑓(𝜎) =

⃦⃦⃦⃦
Dev

(︂
𝜎 − 𝑐1

𝜀𝑝

‖𝜀𝑝‖
− 𝑐2𝜀

𝑝 − 𝛿
𝜀𝑝

‖𝜀𝑝‖

)︂⃦⃦⃦⃦
−
√︂

2

3
𝜎𝑦,

with the complementarity condition

𝛿 ≥ 0, ‖𝜀𝑝‖ ≤ 𝑐3, 𝛿(‖𝜀𝑝‖ − 𝑐3) = 0,

where 𝑐1, 𝑐2 and 𝑐3 are some physical parameters. Note that
𝜀𝑝

‖𝜀𝑝‖
has to be understood to be the whole

unit ball for 𝜀𝑝 = 0.

to be done . . .

26.4 Elasto-plasticity bricks

See the test programs tests/plasticity.cc, interface/tests/matlab/
demo_plasticity.m, interface/tests/matlab/demo_plasticity.py and in
contrib/test_plasticity.

188 Chapter 26. Small strain plasticity

User Documentation, Release 5.4.2

26.4.1 Generic brick

There are two versions of the generic brick. A first one when the plastic multiplier is kept as a variable
of the problem where the added term is of the form:∫︁

Ω
𝜎𝑛+1 : ∇𝛿𝑢𝑑𝑥+

∫︁
Ω
(𝜉𝑛+1 − (𝜉𝑛+1 + 𝑟𝑓(𝜎𝑛+1, 𝐴𝑛+1))+)𝛿𝜉𝑑𝑥 = 0,

with 𝑟 > 0 having a specific value chosen by the brick (in terms of the elasticity coefficients), and when
the return mapping strategy is selected (plastic multiplier is just a data), just the added term:∫︁

Ω
𝜎𝑛+1 : ∇𝑣𝑑𝑥.

The function which adds the brick to a model md is

getfem::add_small_strain_elastoplasticity_brick
(md, mim, lawname, unknowns_type,
const std::vector<std::string> &varnames,
const std::vector<std::string> ¶ms, region = size_type(-1));

where lawname is the name of an implemented plastic law, unknowns_type indicates the choice between
a discretization where the plastic multiplier is an unknown of the problem or (return mapping approach)
just a data of the model stored for the next iteration. Remember that in both cases, a multiplier is stored
anyway. varnames is a set of variable and data names with length which may depend on the plastic law
(at least the displacement, the plastic multiplier and the plastic strain). params is a list of expressions
for the parameters (at least elastic coefficients and the yield stress). These expressions can be some data
names (or even variable names) of the model but can also be any scalar valid expression of GWFL, the
generic weak form language (such as “1/2”, “2+sin(X[0])”, “1+Norm(v)” . . .). The last two parameters
optionally provided in params are the theta parameter of the theta-scheme (generalized trapezoidal rule)
used for the plastic strain integration and the time-step‘dt‘. The default value for theta if omitted is 1,
which corresponds to the classical Backward Euler scheme which is first order consistent. theta=1/2
corresponds to the Crank-Nicolson scheme (trapezoidal rule) which is second order consistent. Any
value between 1/2 and 1 should be a valid value. The default value of dt is ‘timestep’ which simply
indicates the time step defined in the model (by md.set_time_step(dt)). Alternatively it can be any
expression (data name, constant value . . .). The time step can be altered from one iteration to the next
one. region is a mesh region.

The available plasticity laws are:

• “Prandtl Reuss” (or “isotropic perfect plasticity”). Isotropic elasto-plasticity with no hardening.
The variables are the displacement, the plastic multiplier and the plastic strain. The displace-
ment should be a variable and have a corresponding data having the same name preceded by
“Previous_” corresponding to the displacement at the previous time step (typically “u” and “Pre-
vious_u”). The plastic multiplier should also have two versions (typically “xi” and “Previous_xi”)
the first one being defined as data if unknowns_type = DISPLACEMENT_ONLY or as a variable
if unknowns_type = DISPLACEMENT_AND_PLASTIC_MULTIPLIER. The plastic strain should
represent a n x n data tensor field stored on mesh_fem or (preferably) on an im_data (correspond-
ing to mim). The data are the first Lame coefficient, the second one (shear modulus) and the
uniaxial yield stress. IMPORTANT: Note that this law implements the 3D expressions. If it is
used in 2D, the expressions are just transposed to the 2D. For the plane strain approximation, see
below.

• “plane strain Prandtl Reuss” (or “plane strain isotropic perfect plasticity”) The same law as the
previous one but adapted to the plane strain approximation. Can only be used in 2D.

26.4. Elasto-plasticity bricks 189

User Documentation, Release 5.4.2

• “Prandtl Reuss linear hardening” (or “isotropic plasticity linear hardening”). Isotropic elasto-
plasticity with linear isotropic and kinematic hardening. An additional variable compared to
“Prandtl Reuss” law: the accumulated plastic strain. Similarly to the plastic strain, it is only
stored at the end of the time step, so a simple data is required (preferably on an im_data). Two
additional parameters: the kinematic hardening modulus and the isotropic one. 3D expressions
only.

• “plane strain Prandtl Reuss linear hardening” (or “plane strain isotropic plasticity linear harden-
ing”). The same law as the previous one but adapted to the plane strain approximation. Can only
be used in 2D.

IMPORTANT : remember that small_strain_elastoplasticity_next_iter has to be called at the end of each
time step, before the next one (and before any post-treatment : this sets the value of the plastic strain and
plastic multiplier).

Additionaly, the following function allow to pass from a time step to another for the small strain plastic
brick:

getfem::small_strain_elastoplasticity_next_iter
(md, mim, lawname, unknowns_type,
const std::vector<std::string> &varnames,
const std::vector<std::string> ¶ms, region = size_type(-1));

The parameters have to be exactly the same as the ones of the add_small_strain_elastoplasticity_brick,
so see the documentation of this function for any explanations. Basically, this brick computes the plastic
strain and the plastic multiplier and stores them for the next step. Additionaly, it copies the computed
displacement to the data that stores the displacement of the previous time step (typically “u” to “Previ-
ous_u”). It has to be called before any use of compute_small_strain_elastoplasticity_Von_Mises.

The function

getfem::compute_small_strain_elastoplasticity_Von_Mises
(md, mim, lawname, unknowns_type,
const std::vector<std::string> &varnames,
const std::vector<std::string> ¶ms,
const mesh_fem &mf_vm, model_real_plain_vector &VM,
region = size_type(-1));

computes the Von Mises stress field with respect to a small strain elastoplasticity term, approximated
on mf_vm, and stores the result into VM. All other parameters have to be exactly the same as for
add_small_strain_elastoplasticity_brick. Remember that small_strain_elastoplasticity_next_iter has to
be called before any call of this function.

26.4.2 A specific brick based on the low-level generic assembly for perfect plas-
ticity

This is an previous version of a elastoplasticity brick which is restricted to isotropic perfect plasticity
and is based on the low-level generic assembly. Its specificity which could be interesting for testing is
that the flow rule is integrated on finite element nodes (not on Gauss points).

The function adding this brick to a model is:

getfem::add_elastoplasticity_brick
(md, mim, ACP, varname, previous_varname, datalambda, datamu,

→˓datathreshold, datasigma, region);

190 Chapter 26. Small strain plasticity

User Documentation, Release 5.4.2

where:

• varname represents the main displacement unknown on which the brick is added (u).

• previous_varname is the displacement at the previous time step.

• datalambda and datamu are the data corresponding to the Lame coefficients.

• datathreshold represents the plastic threshold of the studied material.

• datasigma represents the stress constraint values supported by the material. It should be
composed of 2 iterates for the time scheme needed for the Newton algorithm used. Note that
the finite element method on which datasigma is defined should be able to represent the
derivative of varname.

• ACP corresponds to the type of projection to be used. It has an ab-
stract_constraints_projection type and for the moment, only exists the VM_projection
corresponding to the Von Mises one.

Be careful: datalambda, datamu and datathreshold could be constants or described on the
same finite element method.

This function assembles the tangent matrix and the right hand side vector which will be solved using a
Newton algorithm.

Additionaly, The function:

getfem::elastoplasticity_next_iter
(md, mim, varname, previous_varname, ACP, datalambda, datamu,

→˓datathreshold, datasigma);

computes the new stress constraint values supported by the material after a load or an unload (once a
solve has been done earlier) and upload the variables varname and datasigma as follows:

𝑢𝑛+1IRightarrowun and 𝜎n+1IRightarrow𝜎n

Then, 𝑢𝑛 and 𝜎𝑛 contains the new values computed and one can restart the process.

The function:

getfem::compute_elastoplasticity_Von_Mises_or_Tresca
(md, datasigma, mf_vm, VM, tresca=false);

computes the Von Mises (or Tresca if tresca = true) criterion on the stress tensor stored in
datasigma . The stress is evaluated on the mesh_fem mf_vm and stored into the vector VM. Of course,
this function can be used if and only if the previous function elastoplasticity_next_iter has
been called earlier.

The function:

getfem::compute_plastic_part
(md, mim, mf_pl, varname, previous_varname, ACP, datalambda, datamu,

→˓datathreshold, datasigma, Plast);

computes on mf_pl the plastic part of the material, that could appear after a load and an unload, into
the vector Plast.

Note that datasigma should be the vector containing the new stress constraint values, i.e. after a load
or an unload of the material.

26.4. Elasto-plasticity bricks 191

User Documentation, Release 5.4.2

192 Chapter 26. Small strain plasticity

CHAPTER 27

ALE Support for object having a large rigid body motion

27.1 ALE terms for rotating objects

This section present a set of bricks facilitating the use of an ALE formulation for rotating bodies having
a rotational symmetry (typically a train wheel).

27.1.1 Theoretical background

This strategy consists in adopting an intermediary description between an Eulerian and a Lagrangian
ones for a rotating body having a rotational symmetry. This intermediary description consist in
a rotating axes with respect to the reference configuration. See for instance [Dr-La-Ek2014] and
[Nackenhorst2004].

It is supposed that the considered body is submitted approximately to a rigid body motion

𝜏(𝑋) = 𝑅(𝑡)𝑋 + 𝑍(𝑡)

and may have additonal deformation (exptected smaller) with respect to this rigid motion, where 𝑅(𝑡) is
a rotation matrix

𝑅(𝑡) =

⎛⎝ cos(𝜃(𝑡)) sin(𝜃(𝑡)) 0
− sin(𝜃(𝑡)) cos(𝜃(𝑡)) 0

0 0 1

⎞⎠ ,

and 𝑍(𝑡) is a translation. Note that, in order to be consistent with a positive translation for a positive
angle for a rolling contact, the rotation is clockwise. This illustrated in the following figure:

Note that the description is given for a three-dimensional body. For two-dimensional bodies, the third
axes is neglected so that 𝑅(𝑡) is a 2× 2 rotation matrix. Let us denote 𝑟(𝑡) the rotation:

𝑟(𝑡,𝑋) = 𝑅(𝑡)𝑋, and 𝐴 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ .

193

User Documentation, Release 5.4.2

We have then

�̇�(𝑡,𝑋) = 𝜃𝐴𝑅(𝑡)𝑋

If 𝜙(𝑡,𝑋) is the deformation of the body which maps the reference configuration Ω0 to the deformed
configuration Ω𝑡 at time 𝑡, the ALE description consists in the decomposition of the deformation of the
cylinder in

𝜙(𝑡,𝑋) = (𝜏(𝑡) ∘ 𝜙(𝑡) ∘ 𝑟(𝑡))(𝑋) = 𝜙(𝑡, 𝑟(𝑡,𝑋)) + 𝑍(𝑡)

With �̄� = 𝑅(𝑡)𝑋 the new considered deformation is

𝜙(𝑡, �̄�) = 𝜙(𝑋)− 𝑍(𝑡)

Thanks to the rotation symmetry of the reference configuration Ω0 :, we note that Ω̄0 = 𝑟(𝑡,Ω0) is
independant of 𝑡 and will serve as the new reference configuration. This is illustrated in the following
figure:

The denomination ALE of the method is justified by the fact that Ω̄0 is an intermediate configuration
which is of Euler type for the rigid motion and a Lagrangian one for the additional deformation of the
solid. If we denote

�̄�(𝑡, �̄�) = 𝜙(𝑡, �̄�)− �̄�

the displacement with respect to this intermediate configuration, the advantage is that if this additional
displacement with respect to the rigid body motion is small, it is possible to use a small deformation
model (for instance linearized elasticity).

Due to the objectivity properties of standard constitutive laws, the expression of these laws in the inter-
mediate configuration is most of the time identical to the expression in a standard reference configuration

194 Chapter 27. ALE Support for object having a large rigid body motion

User Documentation, Release 5.4.2

except for the expression of the time derivative which are modified because the change of coordinate is
nonconstant in time :

𝜕𝜙

𝜕𝑡
=
𝜕𝜙

𝜕𝑡
+ 𝜃∇𝜙𝐴�̄� + �̇�(𝑡),

𝜕2𝜙

𝜕𝑡2
=
𝜕2𝜙

𝜕𝑡2
+ 2𝜃∇𝜕𝜙

𝜕𝑡
𝐴�̄� + 𝜃2div((∇𝜙𝐴�̄�)⊗ (𝐴�̄�)) + 𝜃∇𝜙𝐴�̄� + 𝑍(𝑡).

Note that the term 𝜃𝐴�̄� =

⎛⎝ 𝜃�̄�2

−𝜃�̄�1

0

⎞⎠ is the rigid motion velocity vector. Now, If Θ(𝑡,𝑋) is a quantity

attached to the material points (for instance the temperature), then, with Θ̄(𝑡, �̄�) = Θ(𝑡,𝑋) , one simply
has

𝜕Θ

𝜕𝑡
=
𝜕Θ̄

𝜕𝑡
+ 𝜃∇Θ̄𝐴�̄�

This should not be forgotten that a correction has to be provided for each evolving variable for which
the time derivative intervene in the considered model (think for instance to platic flow for plasticity). So
that certain model bricks canot be used directly (plastic bricks for instance).

GetFEM bricks for structural mechanics are mainly considering the displacement as the amin unknown.
The expression for the displacement is the following:

𝜕𝑢

𝜕𝑡
=
𝜕�̄�

𝜕𝑡
+ 𝜃(𝐼𝑑 +∇�̄�)𝐴�̄� + �̇�(𝑡),

𝜕2𝑢

𝜕𝑡2
=
𝜕2�̄�

𝜕𝑡2
+ 2𝜃∇𝜕�̄�

𝜕𝑡
𝐴�̄� + 𝜃2div(((𝐼𝑑 +∇�̄�)𝐴�̄�)⊗ (𝐴�̄�)) + 𝜃(𝐼𝑑 +∇�̄�)𝐴�̄� + 𝑍(𝑡).

Weak formulation of the transient terms

Assuming 𝜌0 the density in the reference configuration having a rotation symmetry, the term correspond-
ing to acceleration in the weak formulation reads (with 𝑣(𝑋) = 𝑣(�̄�) a test function):∫︁

Ω0

𝜌0
𝜕2𝑢

𝜕𝑡2
· 𝑣𝑑𝑋 =∫︁

Ω̄0

𝜌0
[︂
𝜕2�̄�

𝜕𝑡2
+ 2𝜃∇𝜕�̄�

𝜕𝑡
𝐴�̄� + 𝜃2div(((𝐼𝑑 +∇�̄�)𝐴�̄�)⊗ (𝐴�̄�)) + 𝜃(𝐼𝑑 +∇�̄�)𝐴�̄� + 𝑍(𝑡)

]︂
· 𝑣𝑑�̄�.

The third term in the right hand side can be integrated by part as follows:∫︀
Ω̄0 𝜌

0𝜃2div(((𝐼𝑑 +∇�̄�)𝐴�̄�)⊗ (𝐴�̄�)) · 𝑣𝑑�̄� = −
∫︀
Ω̄0(𝜃

2(𝐼𝑑 +∇�̄�)𝐴�̄�)) · (∇(𝜌0𝑣)𝐴�̄�)𝑑�̄�

+
∫︀
𝜕Ω̄0 𝜌

0𝜃2(((𝐼𝑑 +∇�̄�)𝐴�̄�)⊗ (𝐴�̄�))�̄� · 𝑣𝑑Γ̄.

Since �̄� the outward unit normal vector on 𝜕Ω̄0 is orthogonal to 𝐴�̄� the boundary term is zero and
∇(𝜌0𝑣) = 𝑣 ⊗ ∇𝜌0 + 𝜌0∇𝑣 and since ∇𝜌0.(𝐴�̄�) = 0 because of the assumption on 𝜌0 to have a
rotation symmetry, we have∫︁
Ω̄0

𝜌0𝜃2div(((𝐼𝑑 +∇�̄�)𝐴�̄�)⊗ (𝐴�̄�)) · 𝑣𝑑�̄� = −
∫︁
Ω̄0

𝜌0𝜃2(∇�̄�𝐴�̄�) · (∇𝑣𝐴�̄�)𝑑�̄� −
∫︁
Ω̄0

𝜌0𝜃2(𝐴2�̄�) · 𝑣𝑑�̄�.

Thus globally∫︀
Ω0 𝜌

0𝜕
2𝑢

𝜕𝑡2
· 𝑣𝑑𝑋 =

∫︀
Ω̄0 𝜌

0

[︂
𝜕2�̄�

𝜕𝑡2
+ 2𝜃∇𝜕�̄�

𝜕𝑡
𝐴�̄� + 𝜃∇�̄�𝐴�̄�

]︂
· 𝑣𝑑�̄�

−
∫︀
Ω̄0 𝜌

0𝜃2(∇�̄�𝐴�̄�) · (∇𝑣𝐴�̄�)𝑑�̄� −
∫︀
Ω̄0 𝜌

0(𝜃2𝐴2�̄� + 𝜃𝐴�̄� + 𝑍(𝑡)) · 𝑣𝑑�̄�.

Note that two terms can deteriorate the coercivity of the problem and thus its well posedness and the
stability of time integration schemes: the second one (convection term) and the fifth one. This may
oblige to use additional stabilization techniques for large values of the angular velocity 𝜃.

27.1. ALE terms for rotating objects 195

User Documentation, Release 5.4.2

27.1.2 The available bricks . . .

To be adapted

ind = getfem::brick_name(parmeters);

where parameters are the parameters . . .

27.2 ALE terms for a uniformly translated part of an object

This section present a set of bricks facilitating the use of an ALE formulation for an object being poten-
tially infinite in one direction and which whose part of interests (on which the computation is considered)
is translated uniformly in that direction (typically a bar).

27.2.1 Theoretical background

Let us consider an object whose reference configuration Ω0 ∈ IRd is infinite in the direction 𝐸1, i.e.
Ω0 = IR× 𝜔0 where 𝜔0 ∈ IRd−1. At a time 𝑡, only a “windows” of this object is considered

Ω0𝑡 = (𝛼+ 𝑧(𝑡), 𝛽 + 𝑧(𝑡))× 𝜔0

where 𝑧(𝑡) represents the translation.

If 𝜙(𝑡,𝑋) is the deformation of the body which maps the reference configuration Ω0 to the deformed
configuration Ω𝑡 at time 𝑡, the ALE description consists in considering the intermediary reference con-
figuration

Ω̄0 = (𝛼, 𝛽)× 𝜔0

and 𝜙(𝑡,𝑋) : IR+ × Ω̄0 → IRd defined by

𝜙(𝑡, �̄�) = 𝜙(𝑡,𝑋), with �̄� = 𝑋 − 𝑍(𝑡),

where 𝑍(𝑡) = 𝑧(𝑡)𝐸1. The interest of Ω̄0 is of course to be time independant. Of course, some special
boundary conditions have to be defined on {𝛼} × 𝜔0 and {𝛽} × 𝜔0 (absorbing or periodic boundary
conditions) in order to approximate the fact that the body is infinite.

If we denote

�̄�(𝑡, �̄�) = 𝜙(𝑡, �̄�)−𝑋 = 𝑢(𝑡,𝑋),

196 Chapter 27. ALE Support for object having a large rigid body motion

User Documentation, Release 5.4.2

the displacement on the intermediary configuration, then it is easy to check that

𝜕𝜙

𝜕𝑡
=
𝜕�̄�

𝜕𝑡
−∇�̄��̇�

𝜕2𝜙

𝜕𝑡2
=
𝜕2�̄�

𝜕𝑡2
−∇𝜕�̄�

𝜕𝑡
�̇� +

𝜕2�̄�

𝜕�̇�2
−∇�̄�𝑍.

Weak formulation of the transient terms

Assuming 𝜌0 the density in the reference being invariant with the considered translation, the term cor-
responding to acceleration in the weak formulation reads (with 𝑣(𝑋) = 𝑣(�̄�) a test function and after
integration by part): ∫︁

Ω0

𝜌0
𝜕2𝑢

𝜕𝑡2
· 𝑣𝑑𝑋 =∫︁

Ω̄0

𝜌0
[︂
𝜕2�̄�

𝜕𝑡2
− 2∇𝜕�̄�

𝜕𝑡
�̇� −∇�̄�𝑍

]︂
· 𝑣 − 𝜌0(∇�̄��̇�).(∇𝑣�̇�)𝑑�̄� +

∫︁
𝜕Ω̄0

𝜌0(∇�̄��̇�).𝑣(�̇�.�̄�)𝑑Γ̄,

where �̄� is the outward unit normal vector on 𝜕Ω̄0. Note that the last term vanishes on (𝛼, 𝛽) × 𝜕𝜔0

but not necessarily on {𝛼} × 𝜔0 and {𝛽} × 𝜔0.

27.2. ALE terms for a uniformly translated part of an object 197

User Documentation, Release 5.4.2

198 Chapter 27. ALE Support for object having a large rigid body motion

199

User Documentation, Release 5.4.2

CHAPTER 28

Appendix A. Finite element method list

Table 1: Symbols representing degree of freedom types

Value of the function at the
node.

Value of the gradient along
of the first coordinate.

Value of the gradient along
of the second coordinate.

Value of the gradient along
of the third coordinate for
3D elements.

Value of the whole gradient
at the node.

Value of the normal deriva-
tive to a face.

Value of the second deriva-
tive along the first coordi-
nate (twice).

Value of the second deriva-
tive along the second coor-
dinate (twice).

Value of the second cross
derivative in 2D or second
derivative along the third
coordinate (twice) in 3D.

Value of the whole second
derivative (hessian) at the
node.

Scalar product with a cer-
tain vector (for instance an
edge) for a vector elements.

Scalar product with the nor-
mal to a face for a vector el-
ements.

Bubble function on an ele-
ment or a face, to be speci-
fied.

Lagrange hierarchical d.o.f.
value at the node in a space
of details.

200 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Let us recall that all finite element methods defined in GetFEM are declared in the file getfem_fem.h
and that a descriptor on a finite element method is obtained thanks to the function:

getfem::pfem pf = getfem::fem_descriptor("name of method");

where "name of method" is a string to be choosen among the existing methods.

28.1 Classical 𝑃𝐾 Lagrange elements on simplices

Fig. 1: Examples of classical 𝑃𝐾 Lagrange elements on a segment

It is possible to define a classical 𝑃𝐾 Lagrange element of arbitrary dimension and arbitrary degree.
Each degree of freedom of such an element corresponds to the value of the function on a corresponding
node. The grid of node is the so-called Lagrange grid. Figures Examples of classical P_K Lagrange
elements on a segment.

28.1. Classical 𝑃𝐾 Lagrange elements on simplices 201

User Documentation, Release 5.4.2

Table 2: Examples of classical 𝑃𝐾 Lagrange elements on a trian-
gle.

𝑃1, 3 d.o.f., 𝐶0 𝑃2 element, 6 d.o.f., 𝐶0

𝑃3, 10 d.o.f., 𝐶0 𝑃6 element, 28 d.o.f., 𝐶0

The number of degrees of freedom for a classical 𝑃𝐾 Lagrange element of dimension 𝑃 and degree 𝐾

is
(𝑃 +𝐾)!

𝑃 !𝐾!
. For instance, in dimension 2 (𝑃 = 2), this value is

(𝐾 + 1)(𝐾 + 2)

2
and in dimension 3

(𝑃 = 3), it is
(𝐾 + 1)(𝐾 + 2)(𝐾 + 3)

6
.

202 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 3: Examples of classical 𝑃𝐾 Lagrange elements on a tetra-
hedron.

𝑃1 element, 4 d.o.f., 𝐶0 𝑃2 element, 10 d.o.f., 𝐶0

𝑃4 element, 35 d.o.f., 𝐶0

The particular way used in GetFEM to numerate the nodes are also shown in figures segment, triangle
and tetrahedron. Using another numeration, let

𝑖0, 𝑖1, ...𝑖𝑃 ,

be some indices such that

0 ≤ 𝑖0, 𝑖1, ...𝑖𝑃 ≤ 𝐾, and
𝑃∑︁

𝑛=0

𝑖𝑛 = 𝐾.

Then, the coordinate of a node can be computed as

𝑎𝑖0,𝑖1,...𝑖𝑃 =

𝑃∑︁
𝑛=0

𝑖𝑛
𝐾
𝑆𝑛, for 𝐾 ̸= 0,

where 𝑆0, 𝑆1, ...𝑆𝑁 are the vertices of the simplex (for 𝐾 = 0 the particular choice 𝑎0,0,...0 =∑︀𝑃
𝑛=0

1

𝑃 + 1
𝑆𝑛 has been chosen). Then each base function, corresponding of each node 𝑎𝑖0,𝑖1,...𝑖𝑃

28.1. Classical 𝑃𝐾 Lagrange elements on simplices 203

User Documentation, Release 5.4.2

is defined by

𝜑𝑖0,𝑖1,...𝑖𝑃 =

𝑃∏︁
𝑛=0

𝑖𝑛−1∏︁
𝑗=0

(︂
𝐾𝜆𝑛 − 𝑗

𝑗 + 1

)︂
.

where 𝜆𝑛 are the barycentric coordinates, i.e. the polynomials of degree 1 whose value is 1 on the vertex
𝑆𝑛 and whose value is 0 on other vertices. On the reference element, one has

𝜆𝑛 = 𝑥𝑛, 0 ≤ 𝑛 < 𝑃,

𝜆𝑃 = 1− 𝑥0 − 𝑥1 − ...− 𝑥𝑃−1.

When between two elements of the same degrees (even with different dimensions), the d.o.f. of a
common face are linked, the element is of class𝐶0. This means that the global polynomial is continuous.
If you try to link elements of different degrees, you will get some trouble with the unlinked d.o.f. This is
not automatically supported by GetFEM, so you will have to support it (add constraints on these d.o.f.).

For some applications (computation of a gradient for instance) one may not want the d.o.f. of a common
face to be linked. This is why there are two versions of the classical 𝑃𝐾 Lagrange element.

Table 4: Classical 𝑃𝐾 Lagrange element "FEM_PK(P, K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 1 ≤
𝑃 ≤ 255

(𝐾 + 𝑃)!

𝐾!𝑃 !
𝐶0 No (𝑄 =

1)
Yes
(𝑀 =
𝐼𝑑)

Yes

.

Table 5: Discontinuous 𝑃𝐾 Lagrange element
"FEM_PK_DISCONTINUOUS(P, K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 1 ≤
𝑃 ≤ 255

(𝐾 + 𝑃)!

𝐾!𝑃 !
discontinuousNo (𝑄 =

1)
Yes
(𝑀 =
𝐼𝑑)

Yes

.

204 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 6: Discontinuous 𝑃𝐾 Lagrange element with internal
dofs "FEM_PK_DISCONTINUOUS(P, K, alpha)". The
method "FEM_PK_DISCONTINUOUS(P, K, 0)" is identi-
cal to "FEM_PK_DISCONTINUOUS(P, K)". For alpha > 0,
"FEM_PK_DISCONTINUOUS(P, K, alpha)" corresponds
to a Lagrange method with all finite element nodes in the inte-
rior of the domain located at the position (alpha)𝑔+(1− alpha)𝑎𝑖
for 𝑔 the centroid of the element and 𝑎𝑖 the node of the standard
𝑃𝐾 method.

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 1 ≤
𝑃 ≤ 255

(𝐾 + 𝑃)!

𝐾!𝑃 !
discontinuousNo (𝑄 =

1)
Yes
(𝑀 =
𝐼𝑑)

Yes

Even though Lagrange elements are defined for arbitrary degrees, choosing a high degree can be prob-
lematic for a large number of applications due to the “noisy” characteristic of the lagrange basis. These
elements are recommended for the basic interpolation but for p.d.e. applications elements with hierar-
chical basis are preferable (see the corresponding section).

28.2 Classical Lagrange elements on other geometries

Classical Lagrange elements on parallelepipeds or prisms are obtained as tensor product of Lagrange el-
ements on simplices. When two elements are defined, one on a dimension 𝑃 1 and the other in dimension
𝑃 2, one obtains the base functions of the tensorial product (on the reference element) as

̂︀𝜙𝑖𝑗(𝑥, 𝑦) = ̂︀𝜙1
𝑖 (𝑥)̂︀𝜙2

𝑗 (𝑦), 𝑥 ∈ IRP1
, y ∈ IRP2

,

where ̂︀𝜙1
𝑖 and ̂︀𝜙2

𝑖 are respectively the base functions of the first and second element.

Table 7: Examples of classical 𝑄𝐾 Lagrange elements in dimen-
sion 2.

𝑄1 element, 4 d.o.f., 𝐶0 𝑄3 element, 16 d.o.f., 𝐶0

28.2. Classical Lagrange elements on other geometries 205

User Documentation, Release 5.4.2

The 𝑄𝐾 element on a parallelepiped of dimension 𝑃 is obtained as the tensorial product of 𝑃 classi-
cal 𝑃𝐾 elements on the segment. Examples in dimension 2 are shown in figure dimension 2 and in
dimension 3 in figure dimension 3.

A prism in dimension 𝑃 > 1 is the direct product of a simplex of dimension 𝑃 − 1 with a segment.
The 𝑃𝐾 ⊗ 𝑃𝐾 element on this prism is the tensorial product of the classical 𝑃𝐾 element on a simplex
of dimension 𝑃 − 1 with the classical 𝑃𝐾 element on a segment. For 𝑃 = 2 this coincide with a
parallelepiped. Examples in dimension 3 are shown in figure dimension 3. This is also possible not to
have the same degree on each dimension. An example is shown on figure dimension 3, prism.

Table 8: Examples of classical Lagrange elements in dimension 3.

𝑄1 element, 8 d.o.f., 𝐶0 𝑄3 element, 64 d.o.f., 𝐶0

𝑃1 ⊗ 𝑃1 element, 6 d.o.f., 𝐶0 𝑃3 ⊗ 𝑃3 element, 40 d.o.f., 𝐶0

206 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

.

.

Table 9: . 𝑄𝐾 Lagrange element on parallelepipeds
"FEM_QK(P, K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾𝑃 , 0 ≤
𝐾 ≤ 255

𝑃 , 1 ≤
𝑃 ≤ 255

(𝐾 + 1)𝑃 𝐶0 No (𝑄 =
1)

Yes
(𝑀 =
𝐼𝑑)

Yes

.

Table 10: . 𝑃𝐾 ⊗ 𝑃𝐾 Lagrange element on prisms
"FEM_PK_PRISM(P, K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

2𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 2 ≤
𝑃 ≤ 255

(𝐾 + 1)

× (𝐾 + 𝑃 − 1)!

𝐾!(𝑃 − 1)!

𝐶0 No (𝑄 =
1)

Yes
(𝑀 =
𝐼𝑑)

Yes

.

Table 11: . 𝑃𝐾1 ⊗ 𝑃𝐾2 Lagrange element on prisms
"FEM_PRODUCT(FEM_PK(P-1, K1), FEM_PK(1,
K2))"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾1 +𝐾2,
0 ≤
𝐾1,𝐾2 ≤
255

𝑃 , 2 ≤
𝑃 ≤ 255

(𝐾2 + 1)

× (𝐾1 + 𝑃 − 1)!

𝐾1!(𝑃 − 1)!

𝐶0 No (𝑄 =
1)

Yes
(𝑀 =
𝐼𝑑)

Yes

.

.

28.2. Classical Lagrange elements on other geometries 207

User Documentation, Release 5.4.2

Fig. 2: 𝑃2 ⊗ 𝑃1 Lagrange element on a prism, 12 d.o.f., 𝐶0

208 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Fig. 3: Incomplete 𝑄2 elements in dimension two and three, 8 or 20 d.o.f., 𝐶0

Table 12: Incomplete 𝑄2 Lagrange element on paral-
lelepipeds (Quad 8 and Hexa 20 serendipity elements)
"FEM_Q2_INCOMPLETE(P)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 𝑃 , 2 ≤
𝑃 ≤ 3

8 for 𝑃 =
2
20 for𝑃 =
3

𝐶0 No (𝑄 =
1)

Yes
(𝑀 =
𝐼𝑑)

Yes

28.3 Elements with hierarchical basis

The idea behind hierarchical basis is the description of the solution at different level: a rough level, a
more refined level . . . In the same discretization some degrees of freedom represent the rough descrip-
tion, some other the more rafined and so on. This corresponds to imbricated spaces of discretization.
The hierarchical basis contains a basis of each of these spaces (this is not the case in classical Lagrange
elements when the mesh is refined).

Among the advantages, the condition number of rigidity matrices can be greatly improved, it allows
local raffinement and a resolution with a multigrid approach.

28.3.1 Hierarchical elements with respect to the degree

.

28.3. Elements with hierarchical basis 209

User Documentation, Release 5.4.2

Fig. 4: 𝑃𝐾 Hierarchical element on a segment, 𝐶0

Table 13: . 𝑃𝐾 Classical Lagrange element on simplices
but with a hierarchical basis with respect to the degree
"FEM_PK_HIERARCHICAL(P,K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 1 ≤
𝑃 ≤ 255

(𝐾 + 𝑃)!

𝐾!𝑃 !
𝐶0 No (𝑄 =

1)
Yes
(𝑀 =
𝐼𝑑)

Yes

.

Table 14: . 𝑄𝐾 Classical Lagrange element on paral-
lelepipeds but with a hierarchical basis with respect to the degree
"FEM_QK_HIERARCHICAL(P,K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 1 ≤
𝑃 ≤ 255

(𝐾 + 1)𝑃 𝐶0 No (𝑄 =
1)

Yes
(𝑀 =
𝐼𝑑)

Yes

.

210 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 15: . 𝑃𝐾 Classical Lagrange element on prisms
but with a hierarchical basis with respect to the degree
"FEM_PK_PRISM_HIERARCHICAL(P,K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾, 0 ≤
𝐾 ≤ 255

𝑃 , 2 ≤
𝑃 ≤ 255

(𝐾 + 1)

× (𝐾 + 𝑃 − 1)!

𝐾!(𝑃 − 1)!

𝐶0 No (𝑄 =
1)

Yes
(𝑀 =
𝐼𝑑)

Yes

some particular choices: 𝑃4 will be built with the basis of the 𝑃1, the additional basis of the 𝑃2 then the
additional basis of the 𝑃4.

𝑃6 will be built with the basis of the 𝑃1, the additional basis :of the 𝑃2 then the additional basis of the
𝑃6 (not with the :basis of the 𝑃1, the additional basis of the 𝑃3 then the :additional basis of the 𝑃6, it is
possible to build the latter with :"FEM_GEN_HIERARCHICAL(a,b)")

28.3.2 Composite elements

The principal interest of the composite elements is to build hierarchical elements. But this tool can also
be used to build piecewise polynomial elements.

Fig. 5: composite element "FEM_STRUCTURED_COMPOSITE(FEM_PK(2,1), 3)"

28.3. Elements with hierarchical basis 211

User Documentation, Release 5.4.2

.

Table 16: Composition of a finite element
method on an element with S subdivisions
"FEM_STRUCTURED_COMPOSITE(FEM1, S)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

degree of
FEM1

dimension
of FEM1

variable variable No (𝑄 =
1)

If FEM1
is

piecewise

It is important to use a corresponding composite integration method.

28.3.3 Hierarchical composite elements

Fig. 6: hierarchical composite element "FEM_PK_HIERARCHICAL_COMPOSITE(2,1,3)"

.

212 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 17: Hierarchical composition of a 𝑃𝐾 finite
element method on a simplex with S subdivisions
"FEM_PK_HIERARCHICAL_COMPOSITE(P,K,S)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾 𝑃
(𝑆𝐾 + 𝑃)!

(𝑆𝐾)!𝑃 !
variable No (𝑄 =

1)
Yes
(𝑀 =
𝐼𝑑)

piecewise

.

Table 18: Hierarchical composition of a hierarchical 𝑃𝐾

finite element method on a simplex with S subdivisions
"FEM_PK_FULL_HIERARCHICAL_COMPOSITE(P,K,S)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾 𝑃
(𝑆𝐾 + 𝑃)!

(𝑆𝐾)!𝑃 !
variable No (𝑄 =

1)
Yes
(𝑀 =
𝐼𝑑)

piecewise

Other constructions are possible thanks to "FEM_GEN_HIERARCHICAL(FEM1, FEM2)" and
"FEM_STRUCTURED_COMPOSITE(FEM1, S)".

It is important to use a corresponding composite integration method.

28.4 Classical vector elements

28.4.1 Raviart-Thomas of lowest order elements

.

Table 19: Raviart-Thomas of lowest order element on simplices
"FEM_RT0(P)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

1 𝑃 𝑃 + 1 H(div) Yes (𝑄 =
𝑃)

No Yes

.

28.4. Classical vector elements 213

User Documentation, Release 5.4.2

Fig. 7: RT0 elements in dimension two and three. (P+1 dof, H(div))

214 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 20: Raviart-Thomas of lowest order element on paral-
lelepipeds (quadrilaterals, hexahedrals) "FEM_RT0Q(P)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

1 𝑃 2𝑃 H(div) Yes (𝑄 =
𝑃)

No Yes

28.4.2 Nedelec (or Whitney) edge elements

Fig. 8: Nedelec edge elements in dimension two and three. (P(P+1)/2 dof, H(rot))

.

Table 21: Nedelec (or Whitney) edge element
“FEM_NEDELEC(P)”‘

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

1 𝑃 𝑃 (𝑃 +
1)/2

H(rot) Yes (𝑄 =
𝑃)

No Yes

28.5 Specific elements in dimension 1

28.5.1 GaussLobatto element

The 1D GaussLobatto 𝑃𝐾 element is similar to the classical 𝑃𝐾 fem on the segment, but the nodes
are given by the Gauss-Lobatto-Legendre quadrature rule of order 2𝐾 − 1. This FEM is known to
lead to better conditioned linear systems, and can be used with the corresponding quadrature to perform
mass-lumping (on segments or parallelepipeds).

The polynomials coefficients have been pre-computed with Maple (they require the inversion
of an ill-conditioned system), hence they are only available for the following values of 𝐾:

28.5. Specific elements in dimension 1 215

User Documentation, Release 5.4.2

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 24, 32. Note that for 𝐾 = 1 and 𝐾 = 2, this is the clas-
sical 𝑃1 and 𝑃2 fem.

Table 22: GaussLobatto 𝑃𝐾 element on the segment
"FEM_PK_GAUSSLOBATTO1D(K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

𝐾 1 𝐾 + 1 𝐶0 No (𝑄 =
1)

Yes Yes

28.5.2 Hermite element

Fig. 9: 𝑃3 Hermite element on a segment, 4 d.o.f., 𝐶1

Base functions on the reference element

̂︀𝜙0 = (2𝑥+ 1)(𝑥− 1)2, ̂︀𝜙1 = 𝑥(𝑥− 1)2,̂︀𝜙2 = 𝑥2(3− 2𝑥), ̂︀𝜙3 = 𝑥2(𝑥− 1).

This element is close to be 𝜏 -equivalent but it is not. On the real element the value of the gradient on
vertices will be multiplied by the gradient of the geometric transformation. The matrix 𝑀 is not equal
to identity but is still diagonal.

Table 23: Hermite element on the segment
"FEM_HERMITE(1)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 1 4 𝐶1 No (𝑄 =
1)

No Yes

28.5.3 Lagrange element with an additional bubble function

Fig. 10: 𝑃1 Lagrange element on a segment with additional internal bubble function, 3 d.o.f., 𝐶0

.

216 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 24: Lagrange 𝑃1 element with an additional internal bubble
function "FEM_PK_WITH_CUBIC_BUBBLE(1, 1)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

2 1 3 𝐶0 No (𝑄 =
1)

Yes Yes

28.6 Specific elements in dimension 2

28.6.1 Elements with additional bubble functions

Table 25: Lagrange element on a triangle with additional internal
bubble function

𝑃1 with additional bubble function, 4
d.o.f., 𝐶0

𝑃2 with additional bubble function, 7
d.o.f., 𝐶0

.

Table 26: Lagrange 𝑃1 or 𝑃2 element with an additional internal
bubble function "FEM_PK_WITH_CUBIC_BUBBLE(2, K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 2 4 or 7 𝐶0 No (𝑄 =
1)

Yes Yes

.

.

28.6. Specific elements in dimension 2 217

User Documentation, Release 5.4.2

Fig. 11: 𝑃1 Lagrange element on a triangle with additional internal piecewise linear bubble function

218 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 27: Lagrange 𝑃1 with an additional internal piecewise linear
bubble function "FEM_P1_PIECEWISE_LINEAR_BUBBLE"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

1 2 4 or 7 𝐶0 No (𝑄 =
1)

Yes Piecewise

.

Fig. 12: 𝑃1 Lagrange element on a triangle with additional bubble function on face 0, 4 d.o.f., 𝐶0

.

Table 28: Lagrange 𝑃1 element with an additional bubble function
on face 0 "FEM_P1_BUBBLE_FACE(2)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

2 2 4 𝐶0 No (𝑄 =
1)

Yes Yes

.

28.6. Specific elements in dimension 2 219

User Documentation, Release 5.4.2

Fig. 13: 𝑃1 Lagrange element on a triangle with additional d.o.f on face 0, 4 d.o.f., 𝐶0

.

Table 29: . 𝑃1 Lagrange element on a triangle with additional d.o.f
on face 0 "FEM_P1_BUBBLE_FACE_LAG"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

2 2 4 𝐶0 No (𝑄 =
1)

Yes Yes

28.6.2 Non-conforming 𝑃1 element

.

220 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Fig. 14: 𝑃1 non-conforming element on a triangle, 3 d.o.f., discontinuous

28.6. Specific elements in dimension 2 221

User Documentation, Release 5.4.2

Table 30: . 𝑃1 non-conforming element on a triangle
"FEM_P1_NONCONFORMING"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

1 2 3 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠No (𝑄 =
1)

Yes Yes

28.6.3 Hermite element

Fig. 15: Hermite element on a triangle, 𝑃3, 10 d.o.f., 𝐶0

Base functions on the reference element:

̂︀𝜙0 = (1− 𝑥− 𝑦)(1 + 𝑥+ 𝑦 − 2𝑥2 − 2𝑦2 − 11𝑥𝑦), (̂︀𝜙0(0, 0) = 1),̂︀𝜙1 = 𝑥(1− 𝑥− 𝑦)(1− 𝑥− 2𝑦), (𝜕𝑥 ̂︀𝜙1(0, 0) = 1),̂︀𝜙2 = 𝑦(1− 𝑥− 𝑦)(1− 2𝑥− 𝑦), (𝜕𝑦 ̂︀𝜙2(0, 0) = 1),̂︀𝜙3 = −2𝑥3 + 7𝑥2𝑦 + 7𝑥𝑦2 + 3𝑥2 − 7𝑥𝑦, (̂︀𝜙3(1, 0) = 1),̂︀𝜙4 = 𝑥3 − 2𝑥2𝑦 − 2𝑥𝑦2 − 𝑥2 + 2𝑥𝑦, (𝜕𝑥 ̂︀𝜙4(1, 0) = 1),̂︀𝜙5 = 𝑥𝑦(𝑦 + 2𝑥− 1), (𝜕𝑦 ̂︀𝜙5(1, 0) = 1),̂︀𝜙6 = 7𝑥2𝑦 + 7𝑥𝑦2 − 2𝑦3 + 3𝑦2 − 7𝑥𝑦, (̂︀𝜙6(0, 1) = 1),̂︀𝜙7 = 𝑥𝑦(𝑥+ 2𝑦 − 1), (𝜕𝑥 ̂︀𝜙7(0, 1) = 1),̂︀𝜙8 = 𝑦3 − 2𝑥2𝑦 − 2𝑥𝑦2 − 𝑦2 + 2𝑥𝑦, (𝜕𝑦 ̂︀𝜙8(0, 1) = 1),̂︀𝜙9 = 27𝑥𝑦(1− 𝑥− 𝑦), (̂︀𝜙9(1/3, 1/3) = 1),

222 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

This element is not 𝜏 -equivalent (The matrix 𝑀 is not equal to identity). On the real element linear
combinations of ̂︀𝜙4 and ̂︀𝜙7 are used to match the gradient on the corresponding vertex. Idem for the two
couples (̂︀𝜙5, ̂︀𝜙8) and (̂︀𝜙6, ̂︀𝜙9) for the two other vertices.

Table 31: Hermite element on a triangle "FEM_HERMITE(2)"
degree dimension d.o.f.

number
class vector 𝜏 -

equivalent
Polynomial

3 2 10 𝐶0 No (𝑄 =
1)

No Yes

28.6.4 Morley element

Fig. 16: triangle Morley element, 𝑃2, 6 d.o.f., 𝐶0

This element is not 𝜏 -equivalent (The matrix 𝑀 is not equal to identity). In particular, it can be used for
non-conforming discretization of fourth order problems, despite the fact that it is not 𝒞1.

28.6. Specific elements in dimension 2 223

User Documentation, Release 5.4.2

Table 32: Morley element on a triangle "FEM_MORLEY"
degree dimension d.o.f.

number
class vector 𝜏 -

equivalent
Polynomial

2 2 6 discontinuousNo (𝑄 =
1)

No Yes

28.6.5 Argyris element

Fig. 17: Argyris element, 𝑃5, 21 d.o.f., 𝐶1

224 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

The base functions on the reference element are:

̂︀𝜙0(𝑥, 𝑦) = 1− 10𝑥3 − 10𝑦3 + 15𝑥4 − 30𝑥2𝑦2 + 15𝑦4 − 6𝑥5 + 30𝑥3𝑦2 + 30𝑥2𝑦3 − 6𝑦5, (̂︀𝜙0(0, 0) = 1),̂︀𝜙1(𝑥, 𝑦) = 𝑥− 6𝑥3 − 11𝑥𝑦2 + 8𝑥4 + 10𝑥2𝑦2 + 18𝑥𝑦3 − 3𝑥5 + 𝑥3𝑦2 − 10𝑥2𝑦3 − 8𝑥𝑦4, (𝜕𝑥 ̂︀𝜙1(0, 0) = 1),̂︀𝜙2(𝑥, 𝑦) = 𝑦 − 11𝑥2𝑦 − 6𝑦3 + 18𝑥3𝑦 + 10𝑥2𝑦2 + 8𝑦4 − 8𝑥4𝑦 − 10𝑥3𝑦2 + 𝑥2𝑦3 − 3𝑦5, (𝜕𝑦 ̂︀𝜙2(0, 0) = 1),̂︀𝜙3(𝑥, 𝑦) = 0.5𝑥2 − 1.5𝑥3 + 1.5𝑥4 − 1.5𝑥2𝑦2 − 0.5𝑥5 + 1.5𝑥3𝑦2 + 𝑥2𝑦3, (𝜕2𝑥𝑥 ̂︀𝜙3(0, 0) = 1),̂︀𝜙4(𝑥, 𝑦) = 𝑥𝑦 − 4𝑥2𝑦 − 4𝑥𝑦2 + 5𝑥3𝑦 + 10𝑥2𝑦2 + 5𝑥𝑦3 − 2𝑥4𝑦 − 6𝑥3𝑦2 − 6𝑥2𝑦3 − 2𝑥𝑦4, (𝜕2𝑥𝑦 ̂︀𝜙4(0, 0) = 1),̂︀𝜙5(𝑥, 𝑦) = 0.5𝑦2 − 1.5𝑦3 − 1.5𝑥2𝑦2 + 1.5𝑦4 + 𝑥3𝑦2 + 1.5𝑥2𝑦3 − 0.5𝑦5, (𝜕2𝑦𝑦 ̂︀𝜙5(0, 0) = 1),̂︀𝜙6(𝑥, 𝑦) = 10𝑥3 − 15𝑥4 + 15𝑥2𝑦2 + 6𝑥5 − 15𝑥3𝑦2 − 15𝑥2𝑦3, (̂︀𝜙6(1, 0) = 1),̂︀𝜙7(𝑥, 𝑦) = −4𝑥3 + 7𝑥4 − 3.5𝑥2𝑦2 − 3𝑥5 + 3.5𝑥3𝑦2 + 3.5𝑥2𝑦3, (𝜕𝑥 ̂︀𝜙7(1, 0) = 1),̂︀𝜙8(𝑥, 𝑦) = −5𝑥2𝑦 + 14𝑥3𝑦 + 18.5𝑥2𝑦2 − 8𝑥4𝑦 − 18.5𝑥3𝑦2 − 13.5𝑥2𝑦3, (𝜕𝑦 ̂︀𝜙8(1, 0) = 1),̂︀𝜙9(𝑥, 𝑦) = 0.5𝑥3 − 𝑥4 + 0.25𝑥2𝑦2 + 0.5𝑥5 − 0.25𝑥3𝑦2 − 0.25𝑥2𝑦3, (𝜕2𝑥𝑥 ̂︀𝜙9(1, 0) = 1),̂︀𝜙10(𝑥, 𝑦) = 𝑥2𝑦 − 3𝑥3𝑦 − 3.5𝑥2𝑦2 + 2𝑥4𝑦 + 3.5𝑥3𝑦2 + 2.5𝑥2𝑦3, (𝜕2𝑥𝑦 ̂︀𝜙10(1, 0) = 1),̂︀𝜙11(𝑥, 𝑦) = 1.25𝑥2𝑦2 − 0.75𝑥3𝑦2 − 1.25𝑥2𝑦3, (𝜕2𝑦𝑦 ̂︀𝜙11(1, 0) = 1),̂︀𝜙12(𝑥, 𝑦) = 10𝑦3 + 15𝑥2𝑦2 − 15𝑦4 − 15𝑥3𝑦2 − 15𝑥2𝑦3 + 6𝑦5, (̂︀𝜙12(0, 1) = 1),̂︀𝜙13(𝑥, 𝑦) = −5𝑥𝑦2 + 18.5𝑥2𝑦2 + 14𝑥𝑦3 − 13.5𝑥3𝑦2 − 18.5𝑥2𝑦3 − 8𝑥𝑦4, (𝜕𝑥 ̂︀𝜙13(0, 1) = 1),̂︀𝜙14(𝑥, 𝑦) = −4𝑦3 − 3.5𝑥2𝑦2 + 7𝑦4 + 3.5𝑥3𝑦2 + 3.5𝑥2𝑦3 − 3𝑦5, (𝜕𝑦 ̂︀𝜙14(0, 0) = 1),̂︀𝜙15(𝑥, 𝑦) = 1.25𝑥2𝑦2 − 1.25𝑥3𝑦2 − 0.75𝑥2𝑦3, (𝜕2𝑥𝑥 ̂︀𝜙15(0, 1) = 1),̂︀𝜙16(𝑥, 𝑦) = 𝑥𝑦2 − 3.5𝑥2𝑦2 − 3𝑥𝑦3 + 2.5𝑥3𝑦2 + 3.5𝑥2𝑦3 + 2𝑥𝑦4, (𝜕2𝑥𝑦 ̂︀𝜙16(0, 1) = 1),̂︀𝜙17(𝑥, 𝑦) = 0.5𝑦3 + 0.25𝑥2𝑦2 − 𝑦4 − 0.25𝑥3𝑦2 − 0.25𝑥2𝑦3 + 0.5𝑦5, (𝜕2𝑦𝑦 ̂︀𝜙17(0, 1) = 1),̂︀𝜙18(𝑥, 𝑦) =
√
2(−8𝑥2𝑦2 + 8𝑥3𝑦2 + 8𝑥2𝑦3), (

√
0.5(𝜕𝑥 ̂︀𝜙18(0.5, 0.5) + 𝜕𝑦 ̂︀𝜙18(0.5, 0.5)) = 1),̂︀𝜙19(𝑥, 𝑦) = −16𝑥𝑦2 + 32𝑥2𝑦2 + 32𝑥𝑦3 − 16𝑥3𝑦2 − 32𝑥2𝑦3 − 16𝑥𝑦4, (−𝜕𝑥 ̂︀𝜙19(0, 0.5) = 1),̂︀𝜙20(𝑥, 𝑦) = −16𝑥2𝑦 + 32𝑥3𝑦 + 32𝑥2𝑦2 − 16𝑥4𝑦 − 32𝑥3𝑦2 − 16𝑥2𝑦3, (−𝜕𝑦 ̂︀𝜙20(0.5, 0) = 1),

This element is not 𝜏 -equivalent (The matrix 𝑀 is not equal to identity). On the real element linear
combinations of the transformed base functions ̂︀𝜙𝑖 are used to match the gradient, the second derivatives
and the normal derivatives on the faces. Note that the use of the matrix 𝑀 allows to define Argyris
element even with nonlinear geometric transformations (for instance to treat curved boundaries).

Table 33: Argyris element on a triangle "FEM_ARGYRIS"
degree dimension d.o.f.

number
class vector 𝜏 -

equivalent
Polynomial

5 2 21 𝐶1 No (𝑄 =
1)

No Yes

28.6.6 Hsieh-Clough-Tocher element

This element is not 𝜏 -equivalent. This is a composite element. Polynomial of degree 3 on each
of the three sub-triangles (see figure Hsieh-Clough-Tocher (HCT) element, P_3, 12 d.o.f., C^1 and
[ciarlet1978]). It is strongly advised to use a "IM_HCT_COMPOSITE" integration method with this
finite element. The numeration of the dof is the following: 0, 3 and 6 for the lagrange dof on the first
second and third vertex respectively; 1, 4, 7 for the derivative with respects to the first variable; 2, 5, 8
for the derivative with respects to the second variable and 9, 10, 11 for the normal derivatives on face 0,
1, 2 respectively.

Table 34: HCT element on a triangle "FEM_HCT_TRIANGLE"
degree dimension d.o.f.

number
class vector 𝜏 -

equivalent
Polynomial

3 2 12 𝐶1 No (𝑄 =
1)

No piecewise

28.6. Specific elements in dimension 2 225

User Documentation, Release 5.4.2

Fig. 18: Hsieh-Clough-Tocher (HCT) element, 𝑃3, 12 d.o.f., 𝐶1

226 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

.

Fig. 19: Reduced Hsieh-Clough-Tocher (reduced HCT) element, 𝑃3, 9 d.o.f., 𝐶1

This element exists also in its reduced form, where the normal derivatives are assumed to be polynomial
of degree one on each edge (see figure Reduced Hsieh-Clough-Tocher (reduced HCT) element, P_3, 9
d.o.f., C^1)

Table 35: Reduced HCT element on a triangle
"FEM_REDUCED_HCT_TRIANGLE"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 2 9 𝐶1 No (𝑄 =
1)

No piecewise

28.6.7 A composite 𝐶1 element on quadrilaterals

This element is not 𝜏 -equivalent. This is a composite element. Polynomial of degree 3 on each of the four
sub-triangles (see figure Composite element on quadrilaterals, piecewise P_3, 16 d.o.f., C^1). At least
on the reference element it corresponds to the Fraeijs de Veubeke-Sander element (see [ciarlet1978]). It
is strongly advised to use a "IM_QUADC1_COMPOSITE" integration method with this finite element.

28.6. Specific elements in dimension 2 227

User Documentation, Release 5.4.2

Fig. 20: Composite element on quadrilaterals, piecewise 𝑃3, 16 d.o.f., 𝐶1

228 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Table 36: . 𝐶1 composite element on a quadrilateral (FVS)
"FEM_QUADC1_COMPOSITE"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 2 16 𝐶1 No (𝑄 =
1)

No piecewise

.

Fig. 21: Reduced composite element on quadrilaterals, piecewise 𝑃3, 12 d.o.f., 𝐶1

This element exists also in its reduced form, where the normal derivatives are assumed to be polynomial
of degree one on each edge (see figure Reduced composite element on quadrilaterals, piecewise P_3, 12
d.o.f., C^1)

28.6. Specific elements in dimension 2 229

User Documentation, Release 5.4.2

Table 37: Reduced 𝐶1 composite element on a quadrilateral (re-
duced FVS) "FEM_REDUCED_QUADC1_COMPOSITE"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 2 12 𝐶1 No (𝑄 =
1)

No piecewise

28.7 Specific elements in dimension 3

28.7.1 Lagrange elements on 3D pyramid

GetFEM proposes some Lagrange pyramidal elements of degree 0, 1 and two based on [GR-GH1999]
and [BE-CO-DU2010]. See these references for more details. The proposed element can be raccorded
to standard 𝑃1 or 𝑃2 Lagrange fem on the triangular faces and to a standard 𝑄1 or 𝑄2 Lagrange fem on
the quatrilateral face.

Table 38: Lagrange element on a pyramidal element of order 0, 1
and 2

Degree 0 pyramidal element
with 1 dof

Degree 1 pyramidal element
with 5 dof

Degree 2 pyramidal element
with 14 dof

The associated geometric transformations are "GT_PYRAMID(K)" for K = 1 or 2. The associated
integration methods "IM_PYRAMID(im)" where im is an integration method on a hexahedron (or
alternatively "IM_PYRAMID_COMPOSITE(im)"where im is an integration method on a tetrahedron,
but it is theoretically less accurate) The shape functions are not polynomial ones but rational fractions.
For the first degree the shape functions read:

̂︀𝜙0(𝑥, 𝑦, 𝑧) =
1
4

(︂
1− 𝑥− 𝑦 − 𝑧 +

𝑥𝑦

1− 𝑧

)︂
,

̂︀𝜙1(𝑥, 𝑦, 𝑧) =
1
4

(︂
1 + 𝑥− 𝑦 − 𝑧 − 𝑥𝑦

1− 𝑧

)︂
,

̂︀𝜙2(𝑥, 𝑦, 𝑧) =
1
4

(︂
1− 𝑥+ 𝑦 − 𝑧 − 𝑥𝑦

1− 𝑧

)︂
,

̂︀𝜙3(𝑥, 𝑦, 𝑧) =
1
4

(︂
1 + 𝑥+ 𝑦 − 𝑧 +

𝑥𝑦

1− 𝑧

)︂
,̂︀𝜙4(𝑥, 𝑦, 𝑧) = 𝑧.

For the second degree, setting

𝜉0 =
1− 𝑧 − 𝑥

2
, 𝜉1 =

1− 𝑧 − 𝑦

2
, 𝜉2 =

1− 𝑧 + 𝑥

2
, 𝜉3 =

1− 𝑧 + 𝑦

2
, 𝜉4 = 𝑧,

230 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

the shape functions read:

̂︀𝜙0(𝑥, 𝑦, 𝑧) =
𝜉0𝜉1

(1− 𝜉4)2
((1− 𝜉4 − 2𝜉0)(1− 𝜉4 − 2𝜉1)− 𝜉4(1− 𝜉4)),

̂︀𝜙1(𝑥, 𝑦, 𝑧) = 4
𝜉0𝜉1𝜉2

(1− 𝜉4)2
(2𝜉1 − (1− 𝜉4)),

̂︀𝜙2(𝑥, 𝑦, 𝜉4) =
𝜉1𝜉2

(1− 𝜉4)2
((1− 𝜉4 − 2𝜉1)(1− 𝜉4 − 2𝜉2)− 𝜉4(1− 𝜉4)),

̂︀𝜙3(𝑥, 𝑦, 𝑧) = 4
𝜉3𝜉0𝜉1

(1− 𝜉4)2
(2𝜉0 − (1− 𝜉4)),

̂︀𝜙4(𝑥, 𝑦, 𝑧) = 16
𝜉0𝜉1𝜉2𝜉3
(1− 𝜉4)2

,

̂︀𝜙5(𝑥, 𝑦, 𝑧) = 4
𝜉1𝜉2𝜉3

(1− 𝜉4)2
(2𝜉2 − (1− 𝜉4)),

̂︀𝜙6(𝑥, 𝑦, 𝑧) =
𝜉3𝜉0

(1− 𝜉4)2
((1− 𝜉4 − 2𝜉3)(1− 𝜉4 − 2𝜉0)− 𝜉4(1− 𝜉4)),

̂︀𝜙7(𝑥, 𝑦, 𝑧) = 4
𝜉2𝜉3𝜉0

(1− 𝜉4)2
(2𝜉3 − (1− 𝜉4)),

̂︀𝜙8(𝑥, 𝑦, 𝑧) =
𝜉2𝜉3

(1− 𝜉4)2
((1− 𝜉4 − 2𝜉2)(1− 𝜉4 − 2𝜉3)− 𝜉4(1− 𝜉4)),

̂︀𝜙9(𝑥, 𝑦, 𝑧) = 4
𝜉4

1− 𝜉4
𝜉0𝜉1,

̂︀𝜙10(𝑥, 𝑦, 𝑧) = 4
𝜉4

1− 𝜉4
𝜉1𝜉2,

̂︀𝜙11(𝑥, 𝑦, 𝑧) = 4
𝜉4

1− 𝜉4
𝜉3𝜉0,

̂︀𝜙12(𝑥, 𝑦, 𝑧) = 4
𝜉4

1− 𝜉4
𝜉2𝜉3,̂︀𝜙13(𝑥, 𝑦, 𝑧) = 𝜉4(2𝜉4 − 1).

Table 39: Continuous Lagrange element of order 0, 1 or 2
"FEM_PYRAMID_LAGRANGE(K)"

degree dimension d.o.f. num-
ber

class vector 𝜏 -
equivalent

Polynomial

0 3 1 discontinuous No (𝑄 =
1)

Yes No

1 3 5 𝐶0 No (𝑄 =
1)

Yes No

2 3 14 𝐶0 No (𝑄 =
1)

Yes No

Table 40: Discontinuous Lagrange element of order 0, 1 or 2
"FEM_PYRAMID_DISCONTINUOUS_LAGRANGE(K)"

degree dimension d.o.f. num-
ber

class vector 𝜏 -
equivalent

Polynomial

0 3 1 discontinuous No (𝑄 =
1)

Yes No

1 3 5 discontinuous No (𝑄 =
1)

Yes No

2 3 14 discontinuous No (𝑄 =
1)

Yes No

28.7. Specific elements in dimension 3 231

User Documentation, Release 5.4.2

28.7.2 Elements with additional bubble functions

Table 41: Lagrange element on a tetrahedron with additional inter-
nal bubble function

𝑃1 with additional bubble
function, 5 d.o.f., 𝐶0

𝑃2 with additional bubble
function, 11 d.o.f., 𝐶0

𝑃3 with additional bubble
function, 21 d.o.f., 𝐶0

.

Table 42: 𝑃𝐾 Lagrange element with an additional internal bubble
function "FEM_PK_WITH_CUBIC_BUBBLE(3, K)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

4 3 5, 11 or
21

𝐶0 No (𝑄 =
1)

Yes Yes

.

.

Table 43: Lagrange 𝑃1 element with an additional bubble function
on face 0 "FEM_P1_BUBBLE_FACE(3)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 3 5 𝐶0 No (𝑄 =
1)

Yes Yes

232 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

Fig. 22: 𝑃1 Lagrange element on a tetrahedron with additional bubble function on face 0, 5 d.o.f., 𝐶0

28.7. Specific elements in dimension 3 233

User Documentation, Release 5.4.2

Fig. 23: Hermite element on a tetrahedron, 𝑃3, 20 d.o.f., 𝐶0

234 Chapter 28. Appendix A. Finite element method list

User Documentation, Release 5.4.2

28.7.3 Hermite element

Base functions on the reference element:

̂︀𝜙0(𝑥, 𝑦) = 1− 3𝑥2 − 13𝑥𝑦 − 13𝑥𝑧 − 3𝑦2 − 13𝑦𝑧 − 3𝑧2 + 2𝑥3 + 13𝑥2𝑦 + 13𝑥2𝑧
+13𝑥𝑦2 + 33𝑥𝑦𝑧 + 13𝑥𝑧2 + 2𝑦3 + 13𝑦2𝑧 + 13𝑦𝑧2 + 2𝑧3, (̂︀𝜙0(0, 0, 0) = 1),̂︀𝜙1(𝑥, 𝑦) = 𝑥− 2𝑥2 − 3𝑥𝑦 − 3𝑥𝑧 + 𝑥3 + 3𝑥2𝑦 + 3𝑥2𝑧 + 2𝑥𝑦2 + 4𝑥𝑦𝑧 + 2𝑥𝑧2, (𝜕𝑥 ̂︀𝜙1(0, 0, 0) = 1),̂︀𝜙2(𝑥, 𝑦) = 𝑦 − 3𝑥𝑦 − 2𝑦2 − 3𝑦𝑧 + 2𝑥2𝑦 + 3𝑥𝑦2 + 4𝑥𝑦𝑧 + 𝑦3 + 3𝑦2𝑧 + 2𝑦𝑧2, (𝜕𝑦 ̂︀𝜙2(0, 0, 0) = 1),̂︀𝜙3(𝑥, 𝑦) = 𝑧 − 3𝑥𝑧 − 3𝑦𝑧 − 2𝑧2 + 2𝑥2𝑧 + 4𝑥𝑦𝑧 + 3𝑥𝑧2 + 2𝑦2𝑧 + 3𝑦𝑧2 + 𝑧3, (𝜕𝑧 ̂︀𝜙3(0, 0, 0) = 1),̂︀𝜙4(𝑥, 𝑦) = 3𝑥2 − 7𝑥𝑦 − 7𝑥𝑧 − 2𝑥3 + 7𝑥2𝑦 + 7𝑥2𝑧 + 7𝑥𝑦2 + 7𝑥𝑦𝑧 + 7𝑥𝑧2, (̂︀𝜙4(1, 0, 0) = 1),̂︀𝜙5(𝑥, 𝑦) = −𝑥2 + 2𝑥𝑦 + 2𝑥𝑧 + 𝑥3 − 2𝑥2𝑦 − 2𝑥2𝑧 − 2𝑥𝑦2 − 2𝑥𝑦𝑧 − 2𝑥𝑧2, (𝜕𝑥 ̂︀𝜙5(1, 0, 0) = 1),̂︀𝜙6(𝑥, 𝑦) = −𝑥𝑦 + 2𝑥2𝑦 + 𝑥𝑦2, (𝜕𝑦 ̂︀𝜙6(1, 0, 0) = 1),̂︀𝜙7(𝑥, 𝑦) = −𝑥𝑧 + 2𝑥2𝑧 + 𝑥𝑧2, (𝜕𝑧 ̂︀𝜙7(1, 0, 0) = 1),̂︀𝜙8(𝑥, 𝑦) = −7𝑥𝑦 + 3𝑦2 − 7𝑦𝑧 + 7𝑥2𝑦 + 7𝑥𝑦2 + 7𝑥𝑦𝑧 − 2𝑦3 + 7𝑦2𝑧 + 7𝑦𝑧2, (̂︀𝜙8(0, 1, 0) = 1),̂︀𝜙9(𝑥, 𝑦) = −𝑥𝑦 + 𝑥2𝑦 + 2𝑥𝑦2, (𝜕𝑥 ̂︀𝜙9(0, 1, 0) = 1),̂︀𝜙10(𝑥, 𝑦) = 2𝑥𝑦 − 𝑦2 + 2𝑦𝑧 − 2𝑥2𝑦 − 2𝑥𝑦2 − 2𝑥𝑦𝑧 + 𝑦3 − 2𝑦2𝑧 − 2𝑦𝑧2, (𝜕𝑦 ̂︀𝜙10(0, 1, 0) = 1),̂︀𝜙11(𝑥, 𝑦) = −𝑦𝑧 + 2𝑦2𝑧 + 𝑦𝑧2, (𝜕𝑧 ̂︀𝜙11(0, 1, 0) = 1),̂︀𝜙12(𝑥, 𝑦) = −7𝑥𝑧 − 7𝑦𝑧 + 3𝑧2 + 7𝑥2𝑧 + 7𝑥𝑦𝑧 + 7𝑥𝑧2 + 7𝑦2𝑧 + 7𝑦𝑧2 − 2𝑧3, (̂︀𝜙12(0, 0, 1) = 1),̂︀𝜙13(𝑥, 𝑦) = −𝑥𝑧 + 𝑥2𝑧 + 2𝑥𝑧2, (𝜕𝑥 ̂︀𝜙13(0, 0, 1) = 1),̂︀𝜙14(𝑥, 𝑦) = −𝑦𝑧 + 𝑦2𝑧 + 2𝑦𝑧2, (𝜕𝑦 ̂︀𝜙14(0, 0, 1) = 1),̂︀𝜙15(𝑥, 𝑦) = 2𝑥𝑧 + 2𝑦𝑧 − 𝑧2 − 2𝑥2𝑧 − 2𝑥𝑦𝑧 − 2𝑥𝑧2 − 2𝑦2𝑧 − 2𝑦𝑧2 + 𝑧3, (𝜕𝑧 ̂︀𝜙15(0, 0, 1) = 1),̂︀𝜙16(𝑥, 𝑦) = 27𝑥𝑦𝑧, (̂︀𝜙16(1/3, 1/3, 1/3) = 1),̂︀𝜙17(𝑥, 𝑦) = 27𝑦𝑧 − 27𝑥𝑦𝑧 − 27𝑦2𝑧 − 27𝑦𝑧2, (̂︀𝜙17(0, 1/3, 1/3) = 1),̂︀𝜙18(𝑥, 𝑦) = 27𝑥𝑧 − 27𝑥2𝑧 − 27𝑥𝑦𝑧 − 27𝑥𝑧2, (̂︀𝜙18(1/3, 0, 1/3) = 1),̂︀𝜙19(𝑥, 𝑦) = 27𝑥𝑦 − 27𝑥2𝑦 − 27𝑥𝑦2 − 27𝑥𝑦𝑧, (̂︀𝜙19(1/3, 1/3, 0) = 1),

This element is not 𝜏 -equivalent (The matrix 𝑀 is not equal to identity). On the real element linear
combinations of ̂︀𝜙8, ̂︀𝜙12 and ̂︀𝜙16 are used to match the gradient on the corresponding vertex. Idem on
the other vertices.

Table 44: Hermite element on a tetrahedron
"FEM_HERMITE(3)"

degree dimension d.o.f.
number

class vector 𝜏 -
equivalent

Polynomial

3 3 20 𝐶0 No (𝑄 =
1)

No Yes

28.7. Specific elements in dimension 3 235

User Documentation, Release 5.4.2

236 Chapter 28. Appendix A. Finite element method list

CHAPTER 29

Appendix B. Cubature method list

For more information on cubature formulas, the reader is referred to [EncyclopCubature] for instance.
The integration methods are of two kinds. Exact integrations of polynomials and approximated integra-
tions (cubature formulas) of any function. The exact integration can only be used if all the elements are
polynomial and if the geometric transformation is linear.

A descriptor on an integration method is given by the function:

ppi = getfem::int_method_descriptor("name of method");

where "name of method" is a string to be chosen among the existing methods.

The program integration located in the tests directory lists and checks the degree of each inte-
gration method.

29.1 Exact Integration methods

GetFEM furnishes a set of exact integration methods. This means that polynomials are integrated ex-
actly. However, their use is (very) limited and not recommended. The use of exact integration methods
is limited to the low-level generic assembly for polynomial 𝜏 -equivalent elements with linear transfor-
mations and for linear terms. It is not possible to use them in the high-level generic assembly.

The list of available exact integration methods is the following

237

User Documentation, Release 5.4.2

Table 1: Exact Integration Methods
"IM_NONE()" Dummy integration method.
"IM_EXACT_SIMPLEX(n)" Description of the exact integration of polynomials

on the simplex of reference of dimension n.
"IM_PRODUCT(a, b)" Description of the exact integration on the convex

which is the direct product of the convex in a and in
b.

"IM_EXACT_PARALLELEPIPED(n)"Description of the exact integration of polynomials
on the parallelepiped of reference of dimension n.

"IM_EXACT_PRISM(n)" Description of the exact integration of polynomials
on the prism of reference of dimension n

Even though a description of exact integration method exists on parallelepipeds or prisms, most of the
time the geometric transformations on such elements are nonlinear and the exact integration cannot be
used.

29.2 Newton cotes Integration methods

Newton cotes integration of order K on simplices, parallelepipeds and prisms are denoted by
"IM_NC(N,K)", "IM_NC_PARALLELEPIPED(N,K)" and "IM_NC_PRISM(N,K)" respec-
tively.

29.3 Gauss Integration methods on dimension 1

Gauss-Legendre integration on the segment of order K (with K/2+1 points) are denoted by
"IM_GAUSS1D(K)". Gauss-Lobatto-Legendre integration on the segment of order K (with K/2+1
points) are denoted by "IM_GAUSSLOBATTO1D(K)". It is only available for odd values of K. The
Gauss-Lobatto integration method can be used in conjunction with "FEM_PK_GAUSSLOBATTO1D(K/
2)" to perform mass-lumping.

238 Chapter 29. Appendix B. Cubature method list

User Documentation, Release 5.4.2

29.4 Gauss Integration methods on dimension 2

Table 2: Integration methods on dimension 2
graphic coordinates (x,

y)
weights function to call /

order

(1/3, 1/3) 1/2 "IM_TRIANGLE(1)"
1 point, order 1.

(1/6, 1/6)
(2/3, 1/6)
(1/6, 2/3)

1/6
1/6
1/6

"IM_TRIANGLE(2)"
3 points, order 2.

29.4. Gauss Integration methods on dimension 2 239

User Documentation, Release 5.4.2

Table 3: Integration methods on dimension 2
graphic coordinates (x,

y)
weights function to call /

order

(1/3, 1/3)
(1/5, 1/5)
(3/5, 1/5)
(1/5, 3/5)

-27/96
25/96
25/96
25/96

"IM_TRIANGLE(3)"
4 points, order 3.

(a, a)
(1-2a, a)
(a, 1-2a)
(b, b)
(1-2b, b)
(b, 1-2b)

c
c
c
d
d
d

"IM_TRIANGLE(4)"
6 points, order 4
𝑎 =
0.445948490915965
𝑏 =
0.091576213509771
𝑐 =
0.111690794839005
𝑑 =
0.054975871827661

(1/3, 1/3)
(a, a)
(1-2a, a)
(a, 1-2a)
(b, b)
(1-2b, b)
(b, 1-2b)

9/80
c
c
c
d
d
d

"IM_TRIANGLE(5)"
7 points, order 5

𝑎 =
6 +

√
15

21
𝑏 = 4/7 − 𝑎 𝑐 =
155 +

√
15

2400
𝑑 =

31/240− 𝑐

(a, a)
(1-2a, a)
(a, 1-2a)
(b, b)
(1-2b, b)
(b, 1-2b)
(c, d)
(d, c)
(1-c-d, c)
(1-c-d, d)
(c, 1-c-d)
(d, 1-c-d)

e
e
e
f
f
f
g
g
g
g
g
g

"IM_TRIANGLE(6)"
12 points, order 6
𝑎 =
0.063089104491502
𝑏 =
0.249286745170910
𝑐 =
0.310352451033785
𝑑 =
0.053145049844816
𝑒 =
0.025422453185103
𝑓 =
0.058393137863189
𝑔 =
0.041425537809187

240 Chapter 29. Appendix B. Cubature method list

User Documentation, Release 5.4.2

Table 4: Integration methods on dimension 2
graphic coordinates (x,

y)
weights function to call /

order

(a, a)
(b, a)
(a, b)
(c, e)
(d, c)
(e, d)
(d, e)
(c, d)
(e, c)
(f, f)
(g, f)
(f, g)
(1/3, 1/3)

h
h
h
i
i
i
i
i
i
j
j
j
k

"IM_TRIANGLE(7)"
13 points, order 7
𝑎 =
0.0651301029022
𝑏 =
0.8697397941956
𝑐 =
0.3128654960049
𝑑 =
0.6384441885698
𝑒 =
0.0486903154253
𝑓 =
0.2603459660790
𝑔 =
0.4793080678419
ℎ =
0.0266736178044
𝑖 =
0.0385568804451
𝑗 =
0.0878076287166
𝑘 =
−0.0747850222338

"IM_TRIANGLE(8)"
(see
[EncyclopCubature])
"IM_TRIANGLE(9)"
(see
[EncyclopCubature])
"IM_TRIANGLE(10)"
(see
[EncyclopCubature])
"IM_TRIANGLE(13)"
(see
[EncyclopCubature])

(1/2 +√︀
1/6, 1/2)

((1/2 −√︀
1/24, 1/2 ±√︀
1/8)

1/3
1/3

"IM_QUAD(2)"
3 points, order 2

29.4. Gauss Integration methods on dimension 2 241

User Documentation, Release 5.4.2

Table 5: Integration methods on dimension 2
graphic coordinates (x,

y)
weights function to call /

order

(1/2 ±√︀
1/6, 1/2)

(1/2, 1/2 ±√︀
1/6)

1/4
1/4

"IM_QUAD(3)"
4 points, order 3

(1/2, 1/2)
(1/2 ±√︀

7/30, 1/2)
(1/2 ±√︀

1/12, 1/2 ±√︀
3/20)

2/7
5/63
5/36

"IM_QUAD(5)"
7 points, order 5

"IM_QUAD(7)"
12 points, order 7
"IM_QUAD(9)"
20 points, order 9
"IM_QUAD(17)"
70 points, order
17

There is also the "IM_GAUSS_PARALLELEPIPED(n,k)" which is a direct product of 1D gauss
integrations.

Important note: do not forget that IM_QUAD(k) is exact for polynomials up to degree 𝑘, and that a𝑄𝑘

polynomial has a degree of 2 * 𝑘. For example, IM_QUAD(7) cannot integrate exactly the product of
two𝑄2 polynomials. On the other hand, IM_GAUSS_PARALLELEPIPED(2,4) can integrate exactly
that product . . .

242 Chapter 29. Appendix B. Cubature method list

User Documentation, Release 5.4.2

29.5 Gauss Integration methods on dimension 3

Table 6: Integration methods on dimension 3
graphic coordinates (x,

y)
weights function to call /

order

(1/4, 1/4, 1/4) 1/6 "IM_TETRAHEDRON(1)"
1 point, order 1

(𝑎, 𝑎, 𝑎)
(𝑎, 𝑏, 𝑎)
(𝑎, 𝑎, 𝑏)
(𝑏, 𝑎, 𝑎)

1/24
1/24
1/24
1/24

"IM_TETRAHEDRON(2)"
4 points, order 2

𝑎 =
5−

√
5

20

𝑏 =
5 + 3

√
5

20

29.5. Gauss Integration methods on dimension 3 243

User Documentation, Release 5.4.2

Table 7: Integration methods on dimension 3
graphic coordinates (x,

y)
weights function to call /

order

(1/4, 1/4, 1/4)
(1/6, 1/6, 1/6)
(1/6, 1/2, 1/6)
(1/6, 1/6, 1/2)
(1/2, 1/6, 1/6)

-2/15
3/40
3/40
3/40
3/40

"IM_TETRAHEDRON(3)"
5 points, order 3

(1/4, 1/4, 1/4)
(𝑎, 𝑎, 𝑎)
(𝑎, 𝑎, 𝑐)
(𝑎, 𝑐, 𝑎)
(𝑐, 𝑎, 𝑎)
(𝑏, 𝑏, 𝑏)
(𝑏, 𝑏, 𝑑)
(𝑏, 𝑑, 𝑏)
(𝑑, 𝑏, 𝑏)
(𝑒, 𝑒, 𝑓)
(𝑒, 𝑓, 𝑒)
(𝑓, 𝑒, 𝑒)
(𝑒, 𝑓, 𝑓)
(𝑓, 𝑒, 𝑓)
(𝑓, 𝑓, 𝑒)

8/405
ℎ
ℎ
ℎ
ℎ
𝑖
𝑖
𝑖
𝑖
5/567
5/567
5/567
5/567
5/567
5/567

"IM_TETRAHEDRON(5)"
15 points, order 5

𝑎 =
7 +

√
15

34

𝑏 =
7−

√
15

34

𝑐 =
13 + 3

√
15

34

𝑑 =
13− 3

√
15

34

𝑒 =
5−

√
15

20

𝑓 =
5 +

√
15

20
ℎ =
2665− 14

√
15

226800
𝑖 =
2665 + 14

√
15

226800

Others methods are:

244 Chapter 29. Appendix B. Cubature method list

User Documentation, Release 5.4.2

name element type number of points
"IM_TETRAHEDRON(6)" tetrahedron 24
"IM_TETRAHEDRON(8)" tetrahedron 43
"IM_SIMPLEX4D(3)" 4D simplex 6
"IM_HEXAHEDRON(5)" 3D hexahedron 14
"IM_HEXAHEDRON(9)" 3D hexahedron 58
"IM_HEXAHEDRON(11)" 3D hexahedron 90
"IM_CUBE4D(5)" 4D parallelepiped 24
"IM_CUBE4D(9)" 4D parallelepiped 145

29.6 Direct product of integration methods

You can use "IM_PRODUCT(IM1, IM2)" to produce integration methods on quadrilat-
eral or prisms. It gives the direct product of two integration methods. For instance
"IM_GAUSS_PARALLELEPIPED(2,k)" is an alias for "IM_PRODUCT(IM_GAUSS1D(2,k),
IM_GAUSS1D(2,k))" and can be use instead of the "IM_QUAD" integrations.

29.7 Specific integration methods

For pyramidal elements, "IM_PYRAMID(im)" provides an integration method corre-
sponding to the transformation of an integration im from a hexahedron (for instance
"IM_GAUSS_PARALLELEPIPED(3,5)") onto a pyramid. It is a singular integration method
specically adapted to rational fraction shape functions of the pyramidal elements.

29.8 Composite integration methods

Use "IM_STRUCTURED_COMPOSITE(IM1, S)" to copy IM1 on an element with S subdivisions.
The resulting integration method has the same order but with more points. It could be more stable to use
a composite method rather than to improve the order of the method. Those methods have to be used also
with composite elements. Most of the time for composite element, it is preferable to choose the basic
method IM1 with no points on the boundary (because the gradient could be not defined on the boundary
of sub-elements).

For the HCT element, it is advised to use the "IM_HCT_COMPOSITE(im)" composite integration
(which split the original triangle into 3 sub-triangles).

For pyramidal elements, "IM_PYRAMID_COMPOSITE(im)" provides an integration method ase on
the decomposition of the pyramid into two tetrahedrons (im should be an integration method on a tetra-
hedron). Note that the integraton method "IM_PYRAMID(im)" where im is an integration method on
an hexahedron, should be prefered.

29.6. Direct product of integration methods 245

User Documentation, Release 5.4.2

Fig. 1: Composite method "IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(2), 3)"

246 Chapter 29. Appendix B. Cubature method list

CHAPTER 30

References

247

User Documentation, Release 5.4.2

248 Chapter 30. References

Bibliography

[AB-ER-PI2018] M. Abbas, A. Ern, N. Pignet. Hybrid High-Order methods for finite deformations of
hyperelastic materials. Computational Mechanics, 62(4), 909-928, 2018.

[AB-ER-PI2019] M. Abbas, A. Ern, N. Pignet. A Hybrid High-Order method for incremental asso-
ciative plasticity with small deformations. Computer Methods in Applied Mechanics and
Engineering, 346, 891-912, 2019.

[AL-CU1991] P. Alart, A. Curnier. A mixed formulation for frictional contact problems prone to newton
like solution methods. Comput. Methods Appl. Mech. Engrg. 92, 353–375, 1991.

[Al-Ge1997] E.L. Allgower and K. Georg. Numerical Path Following, Handbook of Numerical Analy-
sis, Vol. V (P.G. Ciarlet and J.L. Lions, eds.). Elsevier, pp. 3-207, 1997.

[AM-MO-RE2014] S. Amdouni, M. Moakher, Y. Renard, A local projection stabilization of fictitious
domain method for elliptic boundary value problems. Appl. Numer. Math., 76:60-75, 2014.

[AM-MO-RE2014b] S. Amdouni, M. Moakher, Y. Renard. A stabilized Lagrange multiplier method
for the enriched finite element approximation of Tresca contact problems of cracked elastic
bodies. Comput. Methods Appl. Mech. Engrg., 270:178-200, 2014.

[bank1983] R.E. Bank, A.H. Sherman, A. Weiser. Refinement algorithms and data structures for regular
local mesh refinement. In Scientific Computing IMACS, Amsterdam, North-Holland, pp 3-
17, 1983.

[ba-dv1985] K.J. Bathe, E.N. Dvorkin, A four-node plate bending element based on Mindlin-Reissner
plate theory and a mixed interpolation. Internat. J. Numer. Methods Engrg., 21, 367-383,
1985.

[Be-Mi-Mo-Bu2005] Bechet E, Minnebo H, Moës N, Burgardt B. Improved implementation and ro-
bustness study of the X-FEM for stress analysis around cracks. Internat. J. Numer. Methods
Engrg., 64, 1033-1056, 2005.

[BE-CO-DU2010] M. Bergot, G. Cohen, M. Duruflé. Higher-order finite elements for hybrid meshes
using new nodal pyramidal elements J. Sci. Comput., 42, 345-381, 2010.

[br-ba-fo1989] F. Brezzi, K.J. Bathe, M. Fortin. Mixed-interpolated element for Reissner-Mindlin
plates. Internat. J. Numer. Methods Engrg., 28, 1787-1801, 1989.

249

User Documentation, Release 5.4.2

[bu-ha2010] E. Burman, P. Hansbo. Fictitious domain finite element methods using cut elements: I. A
stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics, 199:41-
44, 2680-2686, 2010.

[ca-re-so1994] D. Calvetti, L. Reichel and D.C. Sorensen. An implicitly restarted Lanczos method for
large symmetric eigenvalue problems. Electronic Transaction on Numerical Analysis}. 2:1-
21, 1994.

[ca-ch-er2019] K. Cascavita, F. Chouly and A. Ern Hybrid High-Order discretizations combined with
Nitsche’s method for Dirichlet and Signorini boundary conditions. hal-02016378v2, 2019

[CH-LA-RE2008] E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using
a cut-off function. Int. J. Numer. Meth. Engng., 75(6):629-646, 2008.

[CH-LA-RE2011] E. Chahine, P. Laborde, Y. Renard. A non-conformal eXtended Finite Element ap-
proach: Integral matching Xfem. Applied Numerical Mathematics, 61:322-343, 2011.

[ciarlet1978] P.G. Ciarlet. The finite element method for elliptic problems. Studies in Mathematics and
its Applications vol. 4, North-Holland, 1978.

[ciarlet1988] P.G. Ciarlet. Mathematical Elasticity. Volume 1: Three-Dimensional Elasticity. North-
Holland, 1988.

[EncyclopCubature] R. Cools, An Encyclopedia of Cubature Formulas, J. Complexity.

[Dh-Go-Ku2003] A. Dhooge, W. Govaerts and Y. A. Kuznetsov. MATCONT: A MATLAB Package for
Numerical Bifurcation Analysis of ODEs. ACM Trans. Math. Software 31, 141-164, 2003.

[Di-Er2015] D.A. Di Pietro, A. Ern. A hybrid high-order locking free method for linear elasticity on
general meshes. Comput. Methods Appl. Mech. Engrg., 283:1-21, 2015

[Di-Er2017] D.A. Di Pietro, A. Ern. Arbitrary-order mixed methods for heterogeneous anisotropic dif-
fusion on general meshes. IMA Journal of Numerical Analysis, 37(1), 40-63. 2017

[Duan2014] H. Duan. A finite element method for Reissner-Mindlin plates. Math. Comp., 83:286, 701-
733, 2014.

[Dr-La-Ek2014] A. Draganis, F. Larsson, A. Ekberg. Finite element analysis of transient thermome-
chanical rolling contact using an efficient arbitrary Lagrangian-Eulerian description. Com-
put. Mech., 54, 389-405, 2014.

[Fa-Po-Re2015] M. Fabre, J. Pousin, Y. Renard. A fictitious domain method for frictionless con-
tact problems in elasticity using Nitsche’s method. preprint, https://hal.archives-ouvertes.
fr/hal-00960996v1

[Fa-Pa2003] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Vol. II. Springer Series in Operations Research, Springer, New York, 2003.

[Georg2001] K. Georg. Matrix-free numerical continuation and bifurcation. Numer. Funct. Anal. Opti-
mization 22, 303-320, 2001.

[GR-GH1999] R.D. Graglia, I.-L. Gheorma. Higher order interpolatory vector bases on pyramidal
elements IEEE transactions on antennas and propagation, 47:5, 775-782, 1999.

[GR-ST2015] D. Grandi, U. Stefanelli. The Souza-Auricchio model for shape-memory alloys Discrete
and Continuous Dynamical Systems, Series S, 8(4):723-747, 2015.

[HA-WO2009] C. Hager, B.I. Wohlmuth. Nonlinear complementarity functions for plasticity problems
with frictional contact. Comput. Methods Appl. Mech. Engrg., 198:3411-3427, 2009

250 Bibliography

http://www.cs.kuleuven.ac.be/~ines/research/ecf/ecf.html
https://hal.archives-ouvertes.fr/hal-00960996v1
https://hal.archives-ouvertes.fr/hal-00960996v1

User Documentation, Release 5.4.2

[HA-HA2004] A Hansbo, P Hansbo. A finite element method for the simulation of strong and weak dis-
continuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193 (33-35), 3523-
3540, 2004.

[HA-RE2009] J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite
element method. Siam J. on Numer. Anal., 47(2):1474-1499, 2009.

[HI-RE2010] Hild P., Renard Y. Stabilized lagrange multiplier method for the finite element approxi-
mation of contact problems in elastostatics. Numer. Math. 15:1, 101–129, 2010.

[KH-PO-RE2006] Khenous H., Pommier J., Renard Y. Hybrid discretization of the Signorini problem
with Coulomb friction, theoretical aspects and comparison of some numerical solvers. Ap-
plied Numerical Mathematics, 56/2:163-192, 2006.

[KI-OD1988] N. Kikuchi, J.T. Oden. Contact problems in elasticity. SIAM, 1988.

[LA-PO-RE-SA2005] Laborde P., Pommier J., Renard Y., Salaun M. High order extended finite element
method for cracked domains. Int. J. Numer. Meth. Engng., 64:354-381, 2005.

[LA-RE-SA2010] J. Lasry, Y. Renard, M. Salaun. eXtended Finite Element Method for thin cracked
plates with Kirchhoff-Love theory. Int. J. Numer. Meth. Engng., 84(9):1115-1138, 2010.

[KO-RE2014] K. Poulios, Y. Renard, An unconstrained integral approximation of large sliding fric-
tional contact between deformable solids. Computers and Structures, 153:75-90, 2015.

[LA-RE2006] P. Laborde, Y. Renard. Fixed point strategies for elastostatic frictional contact problems.
Math. Meth. Appl. Sci., 31:415-441, 2008.

[Li-Re2014] T. Ligurský and Y. Renard. A Continuation Problem for Computing Solutions of Discre-
tised Evolution Problems with Application to Plane Quasi-Static Contact Problems with
Friction. Comput. Methods Appl. Mech. Engrg. 280, 222-262, 2014.

[Li-Re2014hal] T. Ligurský and Y. Renard. Bifurcations in Piecewise-Smooth Steady-State Problems:
Abstract Study and Application to Plane Contact Problems with Friction. Computational
Mechanics, 56:1:39-62, 2015.

[Li-Re2015hal] T. Ligurský and Y. Renard. A Method of Piecewise-Smooth Numerical Branching. Z.
Angew. Math. Mech., 97:7:815–827, 2017.

[Mi-Zh2002] P. Ming and Z. Shi, Optimal L2 error bounds for MITC3 type element. Numer. Math. 91,
77-91, 2002.

[Xfem] N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without
remeshing. Internat. J. Numer. Methods Engrg., 46, 131-150, 1999.

[Nackenhorst2004] U. Nackenhorst, The ALE formulation of bodies in rolling contact. Theoretical foun-
dation and finite element approach. Comput. Methods Appl. Mech. Engrg., 193:4299-4322,
2004.

[NI-RE-CH2011] S. Nicaise, Y. Renard, E. Chahine, Optimal convergence analysis for the eXtended
Finite Element Method. Int. J. Numer. Meth. Engng., 86:528-548, 2011.

[Pantz2008] O. Pantz The Modeling of Deformable Bodies with Frictionless (Self-)Contacts. Archive
for Rational Mechanics and Analysis, Volume 188, Issue 2, pp 183-212, 2008.

[SCHADD] L.F. Pavarino. Domain decomposition algorithms for the p-version finite element method
for elliptic problems. Luca F. Pavarino. PhD thesis, Courant Institute of Mathematical Sci-
ences}. 1992.

Bibliography 251

User Documentation, Release 5.4.2

[PO-NI2016] K. Poulios, C.F. Niordson, Homogenization of long fiber reinforced composites including
fiber bending effects. Journal of the Mechanics and Physics of Solids, 94, pp 433-452, 2016.

[GetFEM2020] Y. Renard, K. Poulios GetFEM: Automated FE modeling of multiphysics prob-
lems based on a generic weak form language. Preprint, https://hal.archives-ouvertes.fr/
hal-02532422/document

[remacle2003] J.-F. Remacle, M.S. Shephard; An algorithm oriented mesh database. International Jour-
nal for Numerical Methods in Engineering, 58:2, pp 349-374, 2003.

[SE-PO-WO2015] A. Seitz, A. Popp, W.A. Wall, A semi-smooth Newton method for orthotropic plas-
ticity and frictional contact at finite strains. Comput. Methods Appl. Mech. Engrg. 285:228-
254, 2015.

[SI-HU1998] J.C. Simo, T.J.R. Hughes. Computational Inelasticity. Interdisciplinary Applied Mathe-
matics, vol 7, Springer, New York 1998.

[SO-PE-OW2008] E.A. de Souza Neto, D Perić, D.R.J. Owen. Computational methods for plasticity. J.
Wiley & Sons, New York, 2008.

[renard2013] Y. Renard, Generalized Newton’s methods for the approximation and resolution of fric-
tional contact problems in elasticity. Comput. Methods Appl. Mech. Engrg., 256:38-55,
2013.

[SU-CH-MO-BE2001] Sukumar N., Chopp D.L., Moës N., Belytschko T. Modeling holes and inclu-
sions by level sets in the extended finite-element method. Comput. Methods Appl. Mech.
Engrg., 190:46-47, 2001.

[ZT1989] Zienkiewicz and Taylor. The finite element method. 5th edition, volume 3 : Fluids Dynamics.

252 Bibliography

https://hal.archives-ouvertes.fr/hal-02532422/document
https://hal.archives-ouvertes.fr/hal-02532422/document

Index

A
asm, 34, 59

B
bgeot::convex_structure::dim (C++

function), 17
bgeot::convex_structure::face_structure

(C++ function), 17
bgeot::convex_structure::ind_points_of_face

(C++ function), 17
bgeot::convex_structure::nb_faces

(C++ function), 17
bgeot::convex_structure::nb_points

(C++ function), 17
bgeot::convex_structure::nb_points_of_face

(C++ function), 17
bgeot::mesh_structure::structure_of_convex

(C++ function), 17

F
fem, 22

G
generic assembly, 34, 59
getfem::mesh::clear (C++ function), 18
getfem::mesh::convex_area_estimate

(C++ function), 18
getfem::mesh::convex_index (C++

function), 17
getfem::mesh::convex_quality_estimate

(C++ function), 18
getfem::mesh::convex_radius_estimate

(C++ function), 18
getfem::mesh::convex_to_point (C++

function), 17
getfem::mesh::dim (C++ function), 17
getfem::mesh::has_region (C++ func-

tion), 18

getfem::mesh::ind_points_of_convex
(C++ function), 17

getfem::mesh::is_convex_having_neighbor
(C++ function), 18

getfem::mesh::neighbor_of_convex
(C++ function), 17

getfem::mesh::neighbors_of_convex
(C++ function), 17

getfem::mesh::normal_of_face_of_convex
(C++ function), 18

getfem::mesh::optimize_structure
(C++ function), 18

getfem::mesh::points (C++ function), 17
getfem::mesh::points_index (C++

function), 17
getfem::mesh::points_of_convex

(C++ function), 17
getfem::mesh::read_from_file (C++

function), 20
getfem::mesh::region (C++ function), 18
getfem::mesh::trans_of_convex (C++

function), 18
getfem::mesh::write_to_file (C++

function), 20
getfem::mesh_fem::basic_dof_on_region

(C++ function), 27
getfem::mesh_fem::clear (C++ func-

tion), 25
getfem::mesh_fem::convex_index

(C++ function), 25
getfem::mesh_fem::dof_on_region

(C++ function), 27
getfem::mesh_fem::extension_matrix

(C++ function), 27
getfem::mesh_fem::fem_of_element

(C++ function), 25
getfem::mesh_fem::first_convex_of_basic_dof

(C++ function), 27
getfem::mesh_fem::get_qdim (C++

253

User Documentation, Release 5.4.2

function), 27
getfem::mesh_fem::ind_basic_dof_of_element

(C++ function), 26
getfem::mesh_fem::is_reduced (C++

function), 27
getfem::mesh_fem::linked_mesh (C++

function), 25
getfem::mesh_fem::nb_basic_dof

(C++ function), 27
getfem::mesh_fem::nb_basic_dof_of_element

(C++ function), 26
getfem::mesh_fem::nb_dof (C++ func-

tion), 27
getfem::mesh_fem::point_of_basic_dof

(C++ function), 26
getfem::mesh_fem::reduce_to_basic_dof

(C++ function), 27
getfem::mesh_fem::reduction_matrix

(C++ function), 27
getfem::mesh_fem::reference_point_of_basic_dof

(C++ function), 26
getfem::mesh_fem::set_reduction

(C++ function), 27
getfem::mesh_fem::set_reduction_matrices

(C++ function), 27
getfem::mesh_region::add (C++ func-

tion), 18
getfem::mesh_region::index (C++

function), 19
getfem::mesh_region::is_in (C++

function), 18
getfem::mesh_region::is_only_convexes

(C++ function), 19
getfem::mesh_region::is_only_faces

(C++ function), 18
getfem::mesh_region::sup (C++ func-

tion), 18
getfem::model::add_fem_data (C++

function), 105
getfem::model::add_fem_variable

(C++ function), 105
getfem::model::add_filtered_fem_variable

(C++ function), 105
getfem::model::add_fixed_size_data

(C++ function), 105
getfem::model::add_fixed_size_variable

(C++ function), 104, 105
getfem::model::add_im_data (C++

function), 106
getfem::model::add_im_variable

(C++ function), 105

getfem::model::add_initialized_fem_data
(C++ function), 105

getfem::model::add_initialized_fixed_size_data
(C++ function), 105

getfem::model::add_initialized_scalar_data
(C++ function), 105

getfem::model::add_internal_im_variable
(C++ function), 106

getfem::model::add_multiplier (C++
function), 105

getfem::model::complex_rhs (C++
function), 106

getfem::model::complex_tangent_matrix
(C++ function), 106

getfem::model::complex_variable
(C++ function), 106

getfem::model::is_complex (C++ func-
tion), 104

getfem::model::mesh_fem_of_variable
(C++ function), 106

getfem::model::real_rhs (C++ func-
tion), 106

getfem::model::real_tangent_matrix
(C++ function), 106

getfem::model::real_variable (C++
function), 106

getfem::slicer_apply_deformation
(C++ function), 96

getfem::slicer_boundary (C++ func-
tion), 96

getfem::slicer_build_edges_mesh
(C++ function), 97

getfem::slicer_build_mesh (C++ func-
tion), 97

getfem::slicer_build_stored_mesh_slice
(C++ function), 97

getfem::slicer_complementary (C++
function), 96

getfem::slicer_cylinder (C++ func-
tion), 96

getfem::slicer_explode (C++ function),
97

getfem::slicer_half_space (C++ func-
tion), 96

getfem::slicer_intersect (C++ func-
tion), 96

getfem::slicer_isovalues (C++ func-
tion), 96

getfem::slicer_mesh_with_mesh (C++
function), 96

getfem::slicer_none (C++ function), 96

254 Index

User Documentation, Release 5.4.2

getfem::slicer_sphere (C++ function),
96

getfem::slicer_union (C++ function), 96

M
mesh, 22
mesh_fem, 22
mim.clear() (built-in function), 31
mim.convex_index() (built-in function), 31
mim.int_method_of_element() (built-in

function), 31
mim.linked_mesh() (built-in function), 31
model bricks, 101, 103, 112–114, 117, 118,

120, 123–125, 127–129, 131, 138, 151,
160, 168, 177, 191

models, 101, 103, 112–114, 117, 118, 120, 123–
125, 127–129, 131, 138, 151, 160, 168,
177, 191

N
Nitsche’s method, 120

Index 255

	Introduction
	How to install
	Linear algebra procedures
	MPI Parallelization of GetFEM
	State of progress of GetFEM MPI parallelization

	Catch errors
	Build a mesh
	Add an element to a mesh
	Remove an element from a mesh
	Simple structured meshes
	Mesh regions
	Methods of the getfem::mesh object
	Using dal::bit_vector
	Face numbering
	Save and load meshes

	Build a finite element method on a mesh
	First level: manipulating fems on each elements
	Examples
	Second level: the optional “vectorization/tensorization”
	Third level: the optional linear transformation (or reduction)
	Obtaining generic mesh_fem’s
	The partial_mesh_fem object

	Selecting integration methods
	Methods of the mesh_im object

	Mesh refinement
	Compute arbitrary terms - high-level generic assembly procedures - Generic Weak-Form Language (GWFL)
	Overview of GWFL
	Some basic examples
	Derivation order and symbolic differentiation
	C++ Call of the assembly
	C++ assembly examples
	Script languages call of the assembly
	The tensors
	The variables
	The constants or data
	Test functions
	Gradient
	Hessian
	Predefined scalar functions
	User defined scalar functions
	Derivatives of defined scalar functions
	Binary operations
	Unary operators
	Parentheses
	Explicit vectors
	Explicit matrices
	Explicit tensors
	Access to tensor components
	Constant expressions
	Special expressions linked to the current position
	Print command
	Reshape a tensor
	Trace, Deviator, Sym and Skew operators
	Nonlinear operators
	Macro definition
	Explicit Differentiation
	Explicit Gradient
	Interpolate transformations
	Element extrapolation transformation
	Evaluating discontinuities across inter-element edges/faces
	Double domain integrals or terms (convolution - Kernel - Exchange integrals)
	Elementary transformations
	Xfem discontinuity evaluation (with mesh_fem_level_set)
	Storage of sub-expressions in a getfem::im_data object during assembly

	Compute arbitrary terms - low-level generic assembly procedures (deprecated)
	available operations inside the comp command
	others operations

	Some Standard assembly procedures (low-level generic assembly)
	Laplacian (Poisson) problem
	Linear Elasticity problem
	Stokes Problem with mixed finite element method
	Assembling a mass matrix

	Interpolation of arbitrary quantities
	Basic interpolation
	Interpolation based on the generic weak form language (GWFL)

	Incorporate new finite element methods in GetFEM
	Incorporate new approximated integration methods in GetFEM
	Level-sets, Xfem, fictitious domains, Cut-fem
	Representation of level-sets
	Mesh cut by level-sets
	Adapted integration methods
	Cut-fem
	Discontinuous field across some level-sets
	Xfem
	Post treatment

	Tools for HHO (Hybrid High-Order) methods
	HHO elements
	Reconstruction operators
	Stabilization operators

	Interpolation/projection of a finite element method on non-matching meshes
	mixed methods with different meshes
	mortar methods

	Compute L2 and H1 norms
	Compute derivatives
	Export and view a solution
	Saving mesh and mesh_fem objects for the Matlab interface
	Producing mesh slices
	Exporting mesh, mesh_fem or slices to VTK/VTU
	Exporting mesh, mesh_fem or slices to OpenDX

	A pure convection method
	The model description and basic model bricks
	The model object
	The brick object
	How to build a new brick
	How to add the brick to a model
	Generic assembly bricks
	Generic elliptic brick
	Dirichlet condition brick
	Generalized Dirichlet condition brick
	Pointwise constraints brick
	Source term bricks (and Neumann condition)
	Predefined solvers
	Example of a complete Poisson problem
	Nitsche’s method for dirichlet and contact boundary conditions
	Constraint brick
	Other “explicit” bricks
	Helmholtz brick
	Fourier-Robin brick
	Isotropic linearized elasticity brick
	Linear incompressibility (or nearly incompressibility) brick
	Mass brick
	Bilaplacian and Kirchhoff-Love plate bricks
	Mindlin-Reissner plate model
	The model tools for the integration of transient problems
	Small sliding contact with friction bricks
	Large sliding/large deformation contact with friction bricks

	Numerical continuation and bifurcation
	Numerical continuation
	Detection of limit points
	Numerical bifurcation
	Approximation of solution curves of a model

	Finite strain Elasticity bricks
	Some recalls on finite strain elasticity
	Add an nonlinear elasticity brick to a model
	Add a large strain incompressibility brick to a model
	High-level generic assembly versions

	Small strain plasticity
	Theoretical background
	Flow rule integration
	Some classical laws
	Elasto-plasticity bricks

	ALE Support for object having a large rigid body motion
	ALE terms for rotating objects
	ALE terms for a uniformly translated part of an object

	Appendix A. Finite element method list
	Classical PK Lagrange elements on simplices
	Classical Lagrange elements on other geometries
	Elements with hierarchical basis
	Classical vector elements
	Specific elements in dimension 1
	Specific elements in dimension 2
	Specific elements in dimension 3

	Appendix B. Cubature method list
	Exact Integration methods
	Newton cotes Integration methods
	Gauss Integration methods on dimension 1
	Gauss Integration methods on dimension 2
	Gauss Integration methods on dimension 3
	Direct product of integration methods
	Specific integration methods
	Composite integration methods

	References
	Bibliography
	Index

